Supporting information for

Crystal Structures of Two Ag(0)-Containing Nanoclusters Co-Capped by Thiolate and Diphosphine Ligands

Huayan Yang,¹ Yu Wang,¹ and Nanfeng Zheng^{1,*}

¹ State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China Email: nfzheng@xmu.edu.cn

Experimental Details

Reagents: Silver tetrafluoroborate (AgBF₄, A.R.), 3,4-difluorothiophenol (C₆H₄F₂S, A.R.), 4-(trifluoromethyl)thiophenol (C₇H₅F₃, A.R.) 1,2-bis(diphenylphosphino)ethane (DPPE, A.R.), tetraphenylphosphonium bromide (PPh₄Br, A.R.) were purchased from Alfa Aesar Chemical Reagent Co. Ltd. (Tianjin, China), Sodium borohydride (NaBH₄, A.R.), dichloromethane (CH₂Cl₂, A.R.), and methanol (CH₃OH, A.R.) were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). The water used in all experiments was ultrapure. All reagents were used as received without further purification.

Synthesis of $Ag_{16}(SC_6H_3F_2)_{14}(DPPE)_4$ clusters: 19.6 mg AgBF₄ was dissolved in the mixture solution of dichloromethane and methanol. After the solution was cooled to 0 °C in an ice bath, 10.3 mg 1,2-bis(diphenylphosphino)ethane and 9.7 µL 3,4-difluorothiophenol were added. About 60 minutes later, 1.0 mL aqueous solution containing 30.0 µL triethylamine and 20.0 mg NaBH₄ was added quickly to the above mixture under vigorous stirring. The reaction was aging for 12 hours at 0 °C. The aqueous phase was then removed. The mixture in organic phase was then washed several times with water. Then 5.0 mg PPh₄Br were added to the solution. Red sheet

crystals were crystallized from CH_2Cl_2 /hexane at 4 °C after 10 days. The yield of XMC-2 was ~ 20%.

Synthesis of $\{Ag_{32}(SC_6H_4CF_3)_{24}(DPPE)_5\}^{2^-}$ clusters: 20.0 mg AgBF₄ was dissolved in the mixture solution of dichloromethane and methanol. After the solution was cooled to 0 °C, 6.0 mg 1,2-bis(diphenylphosphino)ethane and 20.0 µL 4-(trifluoromethyl)thiophenol were added. About 60 minutes later, 1.0 mL aqueous solution containing 30.0 µL triethylamine and 20.0 mg NaBH₄ was added quickly to the above mixture under vigorous stirring. The reaction was aging for 24 hours at 0 °C. The aqueous phase was then removed. The mixture in organic phase was washed several times with water. 5.0 mg PPh₄Br were added to the solution. Black block crystals were crystallized from CH₂Cl₂/hexane at 4 °C after 10 days. The yield of XMC-2 was ~ 25%.

Single Crystal Analysis of XMC-2 and XMC-3:

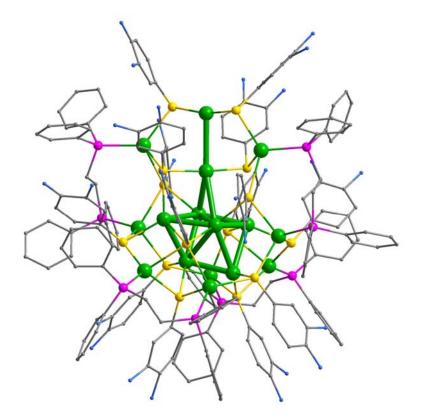
The diffraction data of XMC-2 were collected on an Agilent Technologies SuperNova system. X-ray single crystal diffractometer with Cu K α radiation (λ = 1.54184 Å) at 100 K. The data were processed using CrysAlis^{Pro.1} The structure was solved and refined using Full-matrix least-squares based on F^2 with program SHELXS-97 and SHELXL-97 ² within Olex2.³ In the structure of XMC-2, several F atoms at the 3-position of benzene rings of the ligand of 3,4-difluorothiophenol were found to be disordered and modeled over both in 3- and 5- positions of benzene ring. All non-hydrogen atoms in the cluster were anisotropically refined to obtain the final R factor.

Crystallographic data for XMC-2: *I*4₁/a, a = 25.3878(3) Å, b = 25.3878(3) Å, c = 72.3758(11) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 46649.2(10) Å³, Z = 8, Cu K α , T = 100 K, $2\theta = 127.38^{\circ}$. 48569 reflections were measured, of which 19090 were unique with $R_{int} = 0.0438$. Final $R_1 = 6.94\%$, w $R_2 = 0.1999$ for 1112 parameters and 13710 reflections with $I > 2\sigma(I)$.

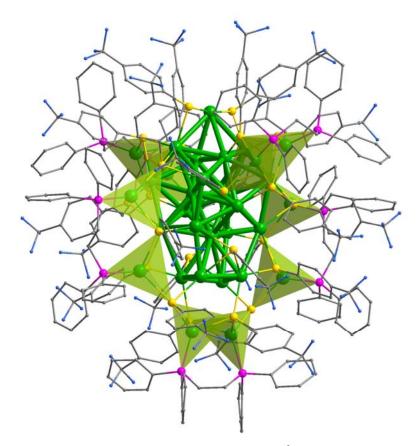
The diffraction data of XMC-3 were collected on a Rigaku RAXIS-RAPID (Mo Kα). Absorption corrections were applied by using the program ABSCOR (Higashi,

1995). The structure was solved by direct methods and refined by the least-squares method using the program SHELXS.

Crystallographic data for XMC-3: *C*2/c, a = 49.221(10) Å, b = 22.630(5) Å, c = 40.889(8) Å, $\alpha = 90^{\circ}$, $\beta = 120.01(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 39437(14) Å³, *Z*=4, Mo K α , *T*=173 K, 2 θ =49.42°. 163584 reflections were measured, of which 40266 were unique with $R_{int} = 0.1177$. Final R_1 =6.59%, w R_2 =0.1817 for 1973 parameters and 26942 reflections with $I > 2\sigma(I)$.


- CrysAlis^{Pro} Version 1.171.35.19. (2011). Agilent Technologies Inc. Santa Clara, CA, USA.
- 2. Sheldrick, G. M. (2008). A short history of SHELX. Acta Cryst. A 64, 112-122.
- 3. Dolomanov et al. (2009). OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **42**, 339-341.

Measurements of Optical Properties:


Pure crystals of XMC-2 and XMC-3 were dissolved in dichloromethane (CH_2Cl_2) for spectrum measurements. UV/Vis absorption spectra ware recorded on a Varian Carry 5000 spectrophotometer. Fluorescence spectra were measured on a Hitachi F-7000 spectrometer.

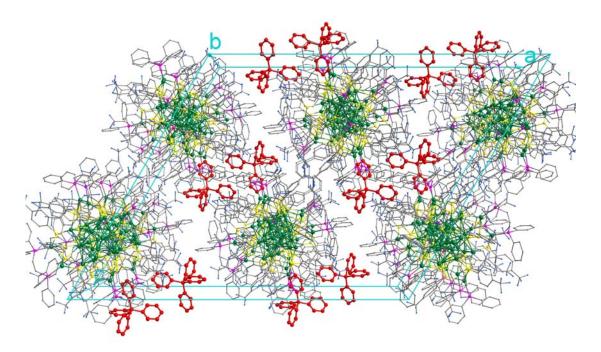

Figure S1 Photograph of XMC-2 crystallized into a single big piece of red crystal.

Figure S2 Crystal structure of $Ag_{16}(SC_6H_3F_2)_{14}(DPPE)_4$ (XMC-2) with only hydrogen atoms omitted. Color legend: green, Ag; yellow, S; pink, P; gray, C; blue, F.

Figure S3 Crystal structure of $\{Ag_{32} (DPPE)_5(SC_6H_4CF_3)_{24}\}^{2-}$ (XMC-3) with only hydrogen atoms omitted. Color legend: green, Ag; yellow, S; pink, P; gray, C; blue, F.

Figure S4 The packing structure of XMC-3 with PPh_4^+ . The PPh_4^+ cations are highlighted in red for better visualization. Color legend for the cluster parts: green, Ag; yellow, S; pink, P; gray, C; blue, F.

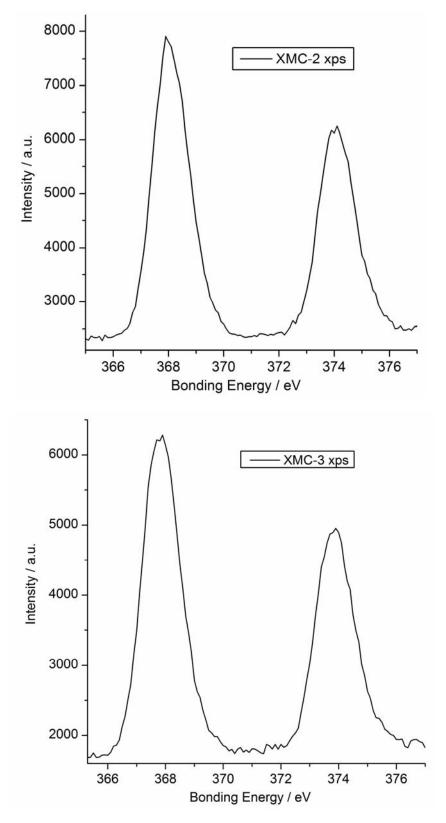


Figure S5 Ag-3d XPS spectra of XMC-2 and XMC-3.