Electronic Supplementary Information (ESI):

Self-template construction of hollow Co₃O₄ microspheres from porous

ultrathin nanosheets and efficient noble-metal-free water oxidation

catalysts

Jun Zhao,^a Yong-Cun Zou,^a Xiaoxin Zou,^a* Tian-Yu Bai,^a Yi-Pu Liu,^a Rui-Qin Gao,^a De-Jun Wang^{a,b}, and Guo-Dong Li^a*

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China

^b Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China

* E-mail: G. D. Li, lgd@jlu.edu.cn;

X. X. Zou, chemistryzouxx@gmail.com

Fig. S1 XRD pattern of the *s*-CoA sample. The XRD pattern of the *s*-CoA sample showed diffraction peaks similar to those of previously-reported polyols-based metal alkoxides.^[S1]

Fig. S2 IR spectrum of the *s*-CoA sample. The broad IR absorption band at ~3390 cm⁻¹ is attributed to hydrogen-bound hydroxyl groups, and the absorption band at ~2850 cm⁻¹ is characteristic of the C-H stretching vibrations. In addition, all the bands located below 2000 cm⁻¹ are generally assigned to Co-O, C-C, C-C-O and C-O-Co groups. Similar IR results were also observed previously for other metal alkoxides.^[S1-2]

Fig. S3 Co 2p electron XPS spectrum for *s*-CoA spheres. Two $2P_{3/2}$ XPS peaks were detected at 786.6 and 802.8 eV, indicating the presense of Co (II) species.^[S7]

Fig. S4 TG curve measured in air for the *s*-CoA sample. TG analysis of *s*-CoA was carried out in air from 25 to 800 °C. Before 150 °C, the weight loss of 10.0% can be attributed to evaporation of the absorbed organic residues and water species on the *s*-CoA surface. The *s*-CoA completely decomposed at around 300 °C with a total weight loss of ~46.5 %. From the weight loss values it is estimated that the empirical composition of *s*-CoA is $C_3H_6O_3Co$.

Fig. S5 SEM image of the composite of the *s*-CoA sample.

Fig. S6 TEM image of the *s*-CoA sample.

Fig. S7 XRD pattern of the *h*-CoOH sample. Fig. S7 reveals that *h*-CoOH possibly contains both β -Co(OH)₂ (which is marked by "&") and cobalt carbonate hydroxide (Co(CO₃)_{0.5}(OH)·0.11H₂O, which is marked by "*").

Fig. S8 IR spectrum of the *h*-CoOH sample. Comparison of the IR spectra of *s*-CoA and *h*-CoOH revealed that upon hydrothermal treatment the IR absorption bands for organic component in *s*-CoA (Fig. S2) disappeared, indicating the complete conversion of *s*-CoA into *h*-CoOH The broad IR absorption band at 2976-3680 cm⁻¹ is due to stretching vibrations of -OH, and the absorption band at ~1620 cm⁻¹ is due to bending vibration of -OH. This demonstrates that a large number of OH groups and water molecules exist in the *h*-CoOH sample. The weak absorption bands below 1500 cm⁻¹ are attributed to the presence of a small amount if carbonate anions.^[S3-5]

Fig. S9 TEM image of the product obtained after hydrothermal treatment of s-CoA for 15 min.

Fig. S10 TEM image of the product obtained after hydrothermal treatment of *s*-CoA for 60 min.

Fig. S11 IR spectrum of *h*-Co@200. The IR spectrum of *h*-Co@200 is in agreement with that of spinel Co_3O_4 .^[S6]

Fig. S12 TEM images of *h*-Co@200.

Fig. S13 HRTEM images of *h*-Co@200.

Fig. S14 Thermal gravimetric curve measured in air of *h*-CoOH. A total weight loss of about 34% is observed, and this weight loss is attributed to the removal of physically-adsorbed water molecules, and the release of H₂O and CO₂ of *h*-CoOH during the thermal treatment. The calculated weight losses from β -Co(OH)₂ to Co₃O₄ and from Co(CO₃)_{0.5}(OH)·0.11H₂O to Co₃O₄ are about 14% and 24%, respectively. Because cobalt hydroxide has a strong ability to interact with water molecules, *h*-CoOH might adsorb a certain amount of H₂O on it. As a result, it is reasonable that a total weight loss of about 34% for *h*-CoOH was observed.

Fig. S15 HRTEM images of (A, B) *h*-Co@300 and (C, D) *h*-Co@400.

Fig. S16 XRD pattern (left) and SEM image (right) of Com-Co.

Fig. S17 Tafel plot for *h*-Co@200. To get the Tafel plot, we measured steady-state current as a function of voltage with a dwell time of 5 min.

Fig. S18 XRD pattern of h-Co@200 after photocatalytic O₂ evolution reaction.

Fig. S19 SEM image of h-Co@200 after photocatalytic O₂ evolution reaction.

Catalyst	TOF (S ⁻¹ Per Co/Mn atom) ^a	TOF (S ⁻¹ Per Co/Mn surface) ^b	Overpotential (mV)	pН	ref
Hollow Co ₃ O ₄	2.6×10^{-3}	0.20	400	13	This Work
Co_3O_4 nanoparticle (< 5 nm)	—	0.21	314	14	ACS Catal. 2013, 3, 2497
Co_3O_4 nanoparticle (~ 6 nm)	$1.87 \times 10^{-2} \sim 9.3 \times 10^{-2}$	0.024-0.12	328	14	J. Phys. Chem. C 2009, 113, 15068
Mesoporous Co ₃ O ₄	$1.58 \times 10^{-3} \sim 4.55 \times 10^{-3}$	_	400	13	Nano Research 2013, 6 , 47
CoO _x film	3.2×10^{-3}	_	300	14	J. Am. Chem. Soc. 2012, 134 , 17253
Co-P film	$7 imes 10^{-4}$	_	410	7.0	Science 2008, 321 , 1072
Zn-Co-LDH	6.1 ×10 ⁻²	_	410	13	J. Am. Chem. Soc. 2013, 135, 17242-17245.
Co-Fe Prussion	2.6× 10 ⁻³	_	305	7.0	J. Am. Chem. Soc. 2013, 135 , 13270
Co-OEC	1.5×10^{-3}	_	400	7.0	Energy Environ. Sci., 2011, 4 , 499
MnO _x film	4×10^{-4}	—	300	14	J. Am. Chem. Soc. 2012, 134, 17253

Table S1. TOFs of some recently-reported solid-state water oxidation electrocatalysts

^aTOF was calculated based on the assumption that all the Co ions present in the material were catalytically active. ^bTOF was calculated based on the assumption that all the surface Co ions present in the material were catalytically active.

Catalyst	TOF (S ⁻¹ Per Co/Mn atom)	ref		
Hollow Co ₃ O ₄	2.7 ×10 ⁻⁴	This Work		
C_{0} , Ω_{1} supported in	$2.12 \times 10^{-4} \sim 4.05 \times 10^{-4}$	Angew. Chem. Int. Ed. 2009, 48 ,1841		
mesoporous silica	2.12 ×10 ~ 4.05 ×10	ACS Catal. 2012, 2, 2753		
Hierarchical porous Co ₃ O ₄	2.4×10^{-4}	J. Am. Chem. Soc. 2013, 135, 4516		
Co ₃ O ₄	1.4×10 ⁻⁴	J. Chem. Soc., Faraday Trans. 1,		
NiCo ₂ O ₄	7.9 ×10 ⁻⁵	1988, 84 , 2795		
$Li_2Co_2O_4$	$1.0 imes 10^{-3}$	Angew. Chem. Int. Ed. 2012, 51 , 1616		
LaCoO ₃	$6.5 imes 10^{-4}$	Phys. Chem. Chem. Phys., 2012, 14 , 5753		
λ -MnO ₂	$3 \times 10^{-5} \sim 5 \times 10^{-6}$	J. Am. Chem. Soc. 2010, 132 , 11467		

Table S2. TOFs of some recently-reported solid-state water oxidation catalysts under visible light irradiation

ESI references:

- [S1] D. Larcher, G. Sudant, R. Patrice, J.-M. Tarascon, Chem. Mater., 2003, 15, 3543.
- [S2] J. Zhao, X.-X. Zou, J. Su, P.-P. Wang, L.-J. Zhou, G.-D. Li, Dalton Trans., 2013, 42, 4365.
- [S3] J. Xiao, S. Yang, J. Mater. Chem., 2012, 22, 12253.
- [S4] J. Li, H. Fan, X. Jia, J. Phys. Chem. C, 2010, 114, 14684.
- [S5] J. Zhang, S. Wang, M. Xu, Y. Wang, B. Zhu, S. Zhang, W. Huang, S. Wu, Cryst. Growth Des., 2009, 9, 3532.
- [S6] X. Zou, J. Su, R. Silva, A. Goswami, B. R. Sathe, T. Asefa, Chem. Commun., 2013, 49, 7522.
- [S7] R. Shi, G. Chen, W. Ma, D. Zhang, G. Qiua, X. Liu, *Dalton Trans.*, 2012, 41, 5981.