Facile Synthesis of Novel 3D Nanoflower-Like Cu_xO/Multilayer

Graphene Composites for Room Temperature NO_x Gas Sensor

Application

Ying Yang,^{ab} Chungui Tian,^a Jingchao Wang,^a Li Sun,^a Keying Shi,^a Wei Zhou,^a and Honggang Fu^a*

^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. Key Laboratory of Physical Chemistry, School of Chemistry and Chemical

Engineering, Heilongjiang University, Harbin 150080, P. R. China; Tel: (+86) 451 8660 9115; Fax: (+86) 451 8666 1259; E-mail address: Fuhg@vip.sina.com (H. G. Fu); shikeying2008@163.com. ^b College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China.

Fig. S1 SEM image of Cu_xO/multilayer graphene composite using EG as carbon resource

Fig. S2 (a) TEM image of GO, the inset shows the SAED pattern; (b) Representative TEM image of Cu_xO/RGO; (c) HRTEM image of part of Cu_xO/RGO; (d) TEM image of Cu_xO/RGO

Fig. S3 The image of interdigitated gold electrode and its parameters.

Fig. S4 A diagram of the gas delivery system for the gas sensing process

Fig. S5 (a, b) SEM images of activated expanded graphite (aEG) showing the accordion-like structure; (c, d) TEM images of aEG with many pores on the its surface

Fig. S6 IR spectrum of the CuGNC2

Fig. S7 Broad XPS spectrum of the CuGNC2

Fig. S8 SEM images of (a) CuMGC11 (aEG, 5 mg) and (b) CuMGC3 (aEG, 20 mg)

Fig. S9 Typical response curves of the Cu_xO sensor to 97~0.97 ppm NO_x at room temperature, the inset SEM image of the prepared Cu_xO

Fig. S10 Response of the CuGNC2 sensor to 97.1 ppm different gases at room temperature in air

Fig. S11 Typical response curves of the CuGNC2 sensor to 48.5 ppm NO_x at room temperature

Table. S1 The gas response and response time of the Cu_xO sensor to 97~0.97 ppm NO_x at roomtemperature in air

C/ppm	97.0	48.5	29.1	9.70	4.85	2.91	0.97	0.485	0.097
Gas Response(%)	13.9	13.5	12.6	10.5	8.2	7.4	4.4	2.6	
Response time/s	2	2	3.3	6.7	10.7	13.3	19.3	24	

Fig. S12 The dynamic response- recovery curve of the CuMGC2 sensor to 97 ppm~97 ppb NO_x at room temperature in the different RH (A) 41%, (B) 62 % and (C) 80 %

Tab. S2 The gas response of the CuMGC2 sensor to 97 ppm~97 ppb NO_x at room temperature in the RH range of 26 ~ 80 %

C/ppm	97.0	48.5	29.1	9.70	4.85	2.91	0.97		
Gas Response at 26 % RH	95.1%	93.1%	88.0%	77.9%	70.4%	62.5%	55.1%		
Gas Response at 41 % RH	92.7%	92.1%	87.1%	80.6%	73.2%	68.5%	43.5%		
Gas Response at 62 % RH	90.3%	83.5%	84.2%	78.8%	70.6%	63.3%	30.3%		
Gas Response at 80 % RH	89.0%	82.2%	79.7%	68.6%	57.8%	43.4%	30.1%		