Supplementary Information

One-pot Hydrothermal Synthesis of Peony-like Ag/Ag_{0.68}V₂O₅ Hybrid as

High-Performance Anode and Cathode Materials for Rechargeable

Lithium Batteries

Denghu Wei, ^{*a*} Xiaona Li, ^{*a*} Yongchun Zhu, *^{*a*} Jianwen Liang, ^{*a*} Kailong Zhang, ^{*a*} and Yitai Qian *^{*a*,*b*}

^a Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P.R. China. Tel: +86-551-63601589; E-mail: ychzhu@ustc.edu.cn

^b School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China. Tel: +86-551-63607234; E-mail: ytqian@ustc.edu.cn

Figure S1. EDS of the $Ag/Ag_{0.68}V_2O_5$ hybrid.

Figure S2 The first three consecutive CVs of the composite at a scan rate of 0.1 mV s⁻¹ between 1.5 and 3.5 V (a); $0.01 \sim 3.00$ V (b).

Method	Composition	Current density (mA/g)		Capacity	(mAh/g)	Capacity retention (cycle	
				initial-last		number)	
		Cathode	Anode	Cathode	Anode	Cathode	Anode
Based on β-AgVO ₃ [9]	β-AgVO ₃ /PANI	30		211-131		62%(20)	
Substrate-assisted [10]	β -AgVO ₃ cluster	100		220-100		45%(50)	
Hydrothermal [S1]	β -Ag _{0.33} V ₂ O ₅ nanowire	20		240-160		67% (8)	
Solid approach [17]	Ag/AgVO3 nanorod	50		242-111		46%(30)	
This work	$Ag/Ag_{0.68}V_2O_5 \ flower$	100	400	321-150	499-524	47%(65)	105%(1000)

Table S1. Electrochemical properties of SVOs prepared by different methods.

[S1] Hu, W.; Zhang, X.; Cheng, Y.; Wu, C.; Cao, F.; Wang, L., ChemSusChem 2011, 4, 1091.

Figure S3 SEM images of the $Ag/Ag_{0.68}V_2O_5$ hybrid after a few cycles as a cathode material.

Figure S4 TEM images of the $Ag/Ag_{0.68}V_2O_5$ hybrid with different reaction time a) 1 h; b) 6 h; c) 12 h; and d) 24 h.

Figure S5 Electrochemical impedance spectrum of the samples with different reaction time.