1 Water-soluble multidentate polymers compactly coating Ag₂S quantum dots

2 with minimized hydrodynamic size and bright emission tunable from red to

3 second near-infrared region

4 Rijun Gui,¹ Ajun Wan,^{1,*} Xifeng Liu,² Wen Yuan,³ and Hui Jin¹

5 ¹ Department of Chemistry, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No.

6 800 Dongchuan Road, Shanghai 200240, P.R. China.

7 ² College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China.

8 ³ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.

9

10 * Corresponding author. Tel: +86 21 34201245, fax: +86 21 54745706.

11 *E-mail* address: wanajun@sjtu.edu.cn (A. Wan).

12

13 Materials.

Abbreviation	Full name	Abbreviation	Full name
PAA	poly(acrylic acid), M _w .=1750	NHS	N-hydroxysuccinimide
Fmoc-EDA	N-Fmoc-ethylenediamine	DIC	N,N'-diisopropylcarbodiimide
BME	β -mercaptoethanol	DMF	dimethylformamide
		DMSO	dimethylsulfoxide

14

15 Part S1. The preparation of multidentate polymers

16 Preparation

17 Briefly, 1 g of PAA (~14 mmol of carboxylic acids) was dissolved with 25 mL DMSO, and placed in a 100 mL three-necked flask. After 24 h stirring at 35 °C, cysteamine (0.18 g, 2.4 mmol) and Fmoc-EDA (0.68 g, 2.4 mmol) 18 19 were dissolved in 10 mL DMSO, and the resultant mixed solution was added to the above flask. The mixture in this flask was protected from light and bubbled with N₂ flow for 30 min at 35 °C. Then, NHS (1 mg, 9 mmol) dissolved 20 in 5 mL DMSO was added. After that, DIC (0.74 g, 5.8 mmol) was added slowly over the course of 40 min under 21 22 vigorous stirring. The reaction mixture was bubbled with N₂ flow for additional 30 min, and then the reaction was 23 allowed to proceed for 7 days at 40 °C in the dark. Afterward, 15 mL of piperidine was added, the reaction solution was stirred for 4 h to deprotect the primary amines. BME (0.5 g, 6.4 mmol) was added to guench the reaction, and 24 the solution was stirred for additional 2 h at 40 °C, followed by cooling it to room temperature and filtering. 25

The resultant solution was condensed to 4 mL at 45 °C using a rotary evaporator, and the products (multidentate polymers) were precipitated with the mixture of ice-cold acetone/chloroform (v/v, 2/1), and then were isolated *via* centrifugation. The polymers were dissolved in 5 mL DMF, filtered and precipitated with acetone/chloroform again.

29 The polymers were treated repeated three times, and finally were washed with acetone, dried in vacuum, and stored

30 under N_2 atmosphere.

31 Determination of Reactive Thiols and Amines

32 Using fluorescamine and Ellman's reagent, the reactive amines and thiols of the freshly prepared polymers were

33 analyzed. For the determination of amines, fluorescamine dissolved in DMSO (10 mg/mL) and glycine standards

34 dissolved in deionized water (0.1 μ m-1.0 mM) were freshly prepared, respectively. In detail, 0.4 mL water, 25 μ L

35 of sodium borate buffer (1 M, pH 8.5), 50 µL samples or standards, and 14 µL of fluorescamine solution were

36 mixed together. After stirring for 20 min in the dark, fluorescence intensity (at 470 nm) of mixture solution was

measured (excited at 380 nm). The polymers (10 µg/mL) were analyzed immediately after dissolution in sodium 1 hydroxide (20 mM). For the determination of thiols, Ellman's reagent (as a 2 mM stock solution) dissolved in 2 sodium acetate buffer (50 mM, pH 4.7), L-cysteine standards (10 µm-0.1 M) dissolved in deionized water were 3 freshly prepared at 4 °C. After mixing 0.85 mL of water, 10 µL samples or standards, 100 µL of Tris buffer (1 M, 4 pH 8.5), and 50 µL of Ellman's reagent together, the polymers (0.5 mg/mL) were analyzed immediately after 5 dissolution with 20 mM of sodium hydroxide. By drawing standard curves, the determination of the molar amount 6 of thiol or amine per gram of polymers was conducted. The determined values were converted to moles of 7 functional group per polymer chain using the molecular weight of the polymers, which was calculated to be ~ 2.2 8 9 kDa via gel filtration chromatography. As a result, for freshly prepared multidentate polymers, each polymer molecule contains approximately ~3.5 active thiols and ~3.0 active amines, according to detected results from 10 11 Ellman's reagent and fluorescamine assays. 12

13 Table S1. Comparison of Synthetic Conditions for Preparing Ag₂S QDs with Different Reaction
14 Temperature (Temp.), Precursors, Solvents, Capping Reagents, Emission Wavelengths, Diameters and
15 PLQYs.

Precursors	Solvents	Capping	Temp.	Emission	Diameter	PLQY	^b Ref.
		reagents	(°C)	(nm)	TEM (nm)	(%)	
(C ₂ H ₅) ₂ NCS ₂ Ag	1-octadecene,	Oleic acid	200	1058	10.2		(14)
	octadecylamine						
(C ₂ H ₅) ₂ NCS ₂ Ag	1-dodecanethiol,	DHLA	230	1150-1200	5.4-7	5.8	(15)
	cyclohexane, ethanol						
$(C_2H_5)_2NCS_2Ag$,	1-dodecanethiol,	DHLA, 6-PEG	210	1200	5.4,	15.5	(16)
	cyclohexane, ethanol				^a 26.8		
AgAc, $(TMS)_2S$,	1-octadecene,	1-octylamine	110	690-1227	1.5-4.6	0.18	(17)
S powder,	myristic acid, toluene						
AgNO ₃							
AgNO ₃ , 3-MPA	Ethylene glycol	3-MPA	145	510-1221	1.5-6.3	2.1	(20)
AgAc, GSH	Ethylene glycol	GSH	150	1106	7.6	3.3	(21)
AgNO ₃ , GSH	Water	GSH	95	960-1015	5.5	1.97	(22)
AgNO ₃ ,	Water	GSH	Room temp.	624-727	1.7-3.7	1.2	(23)
$S\text{-}N_2H_4\text{\cdot}H_2O$							
AgNO ₃ , Na ₂ S	Water	BSA	Room temp.	1050-1294	3.3, ^b 10	1.8	(6)
AgNO ₃ , Na ₂ S	Water	BSA, antiVEGF	Room temp.	840	2.1		(24)
AgNO ₃ , Na ₂ S	Water	2-MPA	90	780-950	2.3-3.1,	7-39	(25)
					^a 3.0-4.7		

16 Note: ^a The diameters of Ag₂S QDs determined by DLS. ^b The referred references (Ref.) listed in the "References"

17 as below. Abbreviations of precursors and capping reagents have been provided in the following auxiliary table.

18

19 Auxiliary Table

Abbreviation	Full name	Abbreviation	Full name
(TMS) ₂ S	hexamethyldisilathiane	DHLA	dihydrolipoic acid
3-MPA	3-mercaptopropionic acid	6-PEG	six-armed poly(ethylene glycol)
GSH	glutathione	BSA bovine serum albumin	
AgAc	silver acetate	antiVEGF	vascular endothelia growth factor

			antibody
$S-N_2H_4$ · H_2O	sulfur-hydrazine hydrate complex	2-MPA	2-mercaptopropionic acid

- 1 References (based on the order of manuscript)
- 2 (6) Yang, H. Y.; Zhao, Y. W.; Zhang, Z. Y.; Xiong, H. M.; Yu, S. N. Nanotechnology 2013, 24, 055706.
- 3 (14) Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. J. Am. Chem. Soc. 2010, 132, 1470-1471.
- 4 (15) Shen, S.; Zhang, Y. J.; Peng, L.; Du, Y.; Wang, Q. Angew. Chem., Int. Ed. 2011, 50, 7115-7118.
- 5 (16) Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. Angew. Chem. Int. Ed.
- 6 **2012**, *51*, 9818-9821.
- 7 (17) Jiang, P.; Tian, Z. Q.; Zhu, C. N.; Zhang, Z. L.; Pang, D. W. Chem. Mater. 2012, 24, 3-5.
- 8 (20) Jiang, P.; Zhu, C. N.; Zhang, Z. L.; Tian, Z. Q.; Pang, D. W. Biomaterials 2012, 33, 5130-5135.
- 9 (21) Tan, L.; Wan, A.; Li, H. Langmuir 2013, 29, 15032-15042.
- 10 (22) Tan, L.; Wan, A.; Li, H. ACS Appl. Mater. Interfaces 2013, 5, 11163-11171.
- 11 (23) Wang, C.; Wang, Y.; Xu, L.; Zhang, D.; Liu, M.; Li, X.; Sun, H.; Lin, Q.; Yang, B. Small 2012, 8, 3137-3142.
- 12 (24) Wang, Y.; Yan, X. P. Chem. Commun. 2013, 49, 3324-3326.
- 13 (25) Hocaoglu, I.; Cizmeciyan, M. N.; Erdem, R.; Ozen, C.; Kurt, A.; Sennaroglu, A.; Acar, H. Y. J. Mater. Chem.
- 14 **2012**, *22*, 14674-14681.
- 15

16

17

19

20 Part S2. The calculation of the molar capping ratio for Ag₂S QDs

- 21 The molar capping ratio (MCR) was defined as the number of thiol and amine groups per surface atom of Ag₂S
- 22 QDs, MCR = $(N_{SH} + N_{NH2}) / (N_{Ag} + N_S)$. For instance, a 3.7 nm of Ag₂S QD has ~250 total surface atoms, obtained
- 23 from theoretical calculations and empirical date (Chem. Mater. 2003, 15, 4300-4308.; J. Am. Chem. Soc. 2005, 127,
- 24 2524-2532.; Nano Lett. 2005, 5, 331-338.; J. Phys. Chem. 1994, 98, 4109-4117.; J. Phys. Chem. C 2007, 111, 75-

- 79.; Nano Lett. 2004, 4, 2361-2365.; J. Phys. Chem. B 2005, 109, 19320-19328). One polymer chain contains 3.5
- thiols and 3.0 amines. So, the optimal MCR of 1.8 (in manuscript) indicates the addition of \sim 70 polymer chains per
- QDs, or ~150 mg of polymer per µmol of QDs. At an elevated temperature, the polymers bind to the QD. This
- binding is highly efficient because no free amine could be detected in dialysate during purification.
- The polydispersity index (PDI) was calculated from chromatograms using conventional techniques for polymer characterization, with the formula: $PDI = M_w / M_n$. The PDI for pure protein solutions typically was 1.25-1.35.

Left: Under normal light (room light)

Right: Under excitation light (UV-365nm radiation)

```
8
9
      Fig. S2. A series of photographs of the as-prepared Ag_2S QDs in aqueous solution for different samples under
```

normal (room) light and UV (365 nm) light illumination.

12 Table S2. Concentration Analysis of Ag⁺ Ions Leaked from Ag₂S QDs in Cell Culture Media.

${}^{a}C_{0}(mg/mL)$	${}^{b}C_{24 h}(mg/mL)$	° LR (%)	^d RSD	^e C _{48 h} (mg/mL)	LR (%)	RSD
0.01	7.00×10^{-6}	0.07	3.85	1.40×10^{-5}	0.14	2.05
0.05	1.45×10^{-4}	0.29	1.69	1.50×10^{-4}	0.30	3.59
0.1	3.20×10^{-4}	0.32	2.46	4.90×10^{-4}	0.49	0.92
0.5	3.95×10^{-3}	0.79	3.09	4.20×10^{-3}	0.84	2.84
1.0	8.60 × 10 ⁻³	0.86	3.65	9.10 × 10 ⁻³	0.91	1.46

^a The concentration of Ag₂S QDs before incubation.

^b The concentration of Ag⁺ ions leaked from Ag₂S QDs when incubating in cell culture media for 24 h.

^c The leakage ratio (LR) of Ag⁺ ions: LR (%) = $100 \times (C_{24 \text{ h or } 48 \text{ h}}) / C_0$.

^d The relative standard deviation (RSD, %) of LR was defined as 100 × (relative standard / mean).

^e The concentration of Ag⁺ ions leaked from Ag₂S QDs when incubating in cell culture media for 48 h.

All concentrations were measured by ICP-MS, and expressed as mean of six repeated measurements.