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1. The rolling results of rectangular nanomembranes with the long side 
approximately perpendicular to the gratings on the imprinted area.

Fig. S1 Optical images of microtubes rolled from arrays of strips with an increasing length to width aspect 

ratio. All the samples except some defects (unrolled rectangles or displacement caused by incomplete 

adhesion to substrate) exhibit the same rolling direction, i.e. the preferential rolling direction 

perpendicular to the gratings.

2. Geometry parameters of the grating-structured metallic microsprings used to 
verify the preferential rolling direction.

Table S1. Geometry parameters (diameter ( ), pitch ( ), and misaligned angle ( )) used to calculated 𝐷0 𝑝0 𝛽

the helical angle ( ) of grating-structured microspring.𝛼

Diameter  ( )𝐷0 𝑚 Pitch  ( )𝑝0 𝑚 Misaligned angle  (deg)𝛽 Helical angle  (deg)𝛼

17.3 0 90
14.1 125.0 17 70.4
16.2 129.8 20 68.6
15.5 69.1 35 55.9
14.4 51.7 40 48.8
14.0 33.8 52 37.5
15.0 25.2 60 28.1
15.1 15.9 72 18.5
16.6 90 0
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3. Imprinted samples for the study of the dependence of microspring diameter 
on the grating period. 

Fig. S2 Optical images of imprinted samples with a grating period of: (a) , (b) , (c) ~2.3 𝜇𝑚 ~3.4 𝜇𝑚

, (d) , and (e) . All the images were obtained at 2000X magnification and the ~5.0 𝜇𝑚 ~6.7 𝜇𝑚 ~9.0 𝜇𝑚

scale bar is .20 𝜇𝑚

4. Imprinted samples with a period of  applied for the fabrication of ~ 1.4 𝑚
flowing rate sensor.

Fig. S3 SEM image of imprinted grating structures with a period of  and the amplitude was ~1.4 𝑚

estimated as .~100 𝑛𝑚
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5. Geometry parameters of , , ,  that serves as examples to 𝑆𝑃1 𝑆𝑃2 𝑆𝑃3 𝑆𝑃4
detect the flowing rate.

Table S2. Initial parameters of the grating-structured metallic microsprings as flowing rate sensors.

Microsprings 𝑚  ( )𝐷0 𝑚  ( )𝑝0 𝑚 (nm) 𝑡 

SP1 2.0 19.8 56.6 70

SP2 2.7 16.3 61.4 40

SP3 4.0 12.9 37.0 30

SP4 5.5 15.8 44.4 40

Fig. S4 Corresponding optical images of , , ,  at the relaxed state and elongated state.𝑆𝑃1 𝑆𝑃2 𝑆𝑃3 𝑆𝑃4
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6. Calculations
(1) The surface area of grating-structured metallic microspring

Fig. S5 (a) Schematic diagram of the tapered profile of the gratings and the periodical -shaped cross-𝑆

section of the metal nanomembranes deposited on the sacrificial layer. (b) The projection of the cross-

section of the grating-structured microsprings.

In Fig. S5(a), we define the facet inclined to the initial substrate as the slope facet and 
the facet parallel to the substrate as the parallel facet. It’s clear that four slope facets 
(marked by I, II, III, IV in (a) and I, II, III, IV in (b)) were added at each period of the 
grating in comparison to the smooth microspring. For each period, the ratio  of the 𝛼0

additional slope facets area to the parallel facets area can be expressed as:

(S1)
𝛼0 = 4ℎ𝑙

𝑙 = 4ℎ


where , , and  are the amplitude, the length, and the period of the grating, respectively. ℎ 𝑙 

Then the total ratio  for a grating-structured microspring with a radius  can be written as 𝛼 𝑅

follows:

  (S2)
𝛼 = 8𝑅ℎ

2

Since the total area of the parallel facets are equal to the one of the smooth microspring 
, the total surface area of the grating-structured microspring  can be given 𝑆𝑠𝑚𝑜𝑜𝑡ℎ 𝑆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑

as:

(S3)  𝑆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑 = 𝑆𝑠𝑚𝑜𝑜𝑡ℎ(1 + 𝛼)

(2) The spring constant  of grating-structured metallic microspring𝐾

According to the classical elasticity theory, the spring constant  for one turn of the 𝑘0

symmetric microspring is expressed by:1
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(S4)
1
𝑘0

= 4𝜋2

𝐺𝑙0 [ 𝑝2

8𝜋2(1 + 𝜐)𝐴
+ (7 + 6𝜐)𝑅2

(6 + 6𝜐)𝐴 + 𝑝2𝑅2

8𝜋2(1 + 𝜐)𝐼
+ 𝑅4

𝐼𝑝 ]
where  and  are the Poisson’s ratio and the shear modulus, respectively; , , , and  𝜐 𝐺 𝑙0 𝐴 𝐼 𝐼𝑝

are the length, the cross section area, the moment of inertia, and the polar moment of 
inertial of the initial nanomembrane before rolling into the grating-structured microspring. 
It’s noteworthy that the profile of the imprinted grating structures, for theoretical purpose, 
can be simplified as ‘step’ shape resulting in an -shaped cross section of the replicated 𝑆

metal film. The duty circle (i.e. the ratio of the line width to the grating period) of the 
grating structure in the as-fabricated template applied in this flow rate sensor system is 
nearly  (see Fig. S4), which is approximated as  in our assumption. For the metal 1:2 1:2

nanomembrane with a misaligned angle of  (see the inset of Fig. 3b), given that the 𝛽
number of gratings  on the cross section, is expressed as: 𝑛

(S5)
𝑛 = 𝑤cos 𝛽

𝜆

and we thus obtain:

,
𝐴 =  𝑤cos 𝛽

𝜆 (𝜆 + 2ℎ)𝑡 

,
𝐼 = 𝑤cos 𝛽 ∙ [( 1

12 + ℎ
2𝜆 ‒ ℎ2

𝜆2)𝑡3 + (ℎ2

4 + ℎ3

6𝜆)𝑡]

𝐼𝑝 = 𝑤cos 𝛽 ∙ [( 1
12 + 11ℎ

12𝜆 ‒ ℎ2

𝜆2)𝑡3 + ℎ𝑡2

2 + (5𝜆2

96 + 𝜆ℎ
4 + ℎ2

8 + ℎ3

6𝜆)𝑡]                                     +  
𝑤cos 𝛽

𝜆 (𝑤cos 𝛽
𝜆 ‒ 1)(2𝑤cos 𝛽

𝜆 ‒ 1)(𝜆 + 2ℎ)𝜆2𝑡
6

Since  is two orders of magnitude smaller than  and , eqn (S4) can be further 𝑡 𝜆 𝐼𝑝 ≫ 𝐼

simplified as:

 

1
𝑘0

= 4𝜋2

𝐺𝑙0
∙ 𝑝2𝑅2

8𝜋2(1 + 𝜐)𝐼
= 𝑝2𝑅2

2𝐺𝑙0(1 + 𝜐)𝐼 = 6𝑝2𝑅2

𝐺𝑙0(1 + 𝜐)[(1 + 6ℎ
𝜆 ‒ 12ℎ2

𝜆2 )𝑡3 + (3ℎ2 + 2ℎ3

𝜆 )𝑡]𝑤cos 𝛽

(S6)

Hence, the spring constant  of the grating-structured microspring with  turns can be 𝐾 𝑚

expressed by:

(S7)

1
𝐾 = 6𝑚𝑝2𝑅2

𝐺𝑙0(1 + 𝜐)[(1 + 6ℎ
𝜆 ‒ 12ℎ2

𝜆2 )𝑡3 + (3ℎ2 + 2ℎ3

𝜆 )𝑡]𝑤cos 𝛽

(3) Flowing rate ( ) as a function of elongation ( )𝜈 𝑥
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According the definition of Hookes’ law , the following expression 𝐹𝑑 ‒ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑒𝑑 = 𝐾𝑥

can be obtained as:

(S8)

2𝜇𝑙𝑤

[ln (2𝐿
𝑅 ) ‒ 0.72]𝑅

𝜈 ⋅ (1 + 8𝜋𝑅ℎ
𝜆2 ) =

𝐺𝑙0(1 + 𝜐)[(1 + 6ℎ
𝜆 ‒ 12ℎ2

𝜆2 )𝑡3 + (3ℎ2 + 2ℎ3

𝜆 )𝑡]𝑤cos 𝛽

6𝑚𝑝2𝑅2 ⋅ 𝑥

Since , eqn (S8) can be further simplified as:𝑙 = 𝑚 ∙ 𝑙0

(S9)

𝜈 =
𝐺(1 + 𝜐)[(1 + 6ℎ

𝜆 ‒ 12ℎ2

𝜆2 )𝑡3 + (3ℎ2 + 2ℎ3

𝜆 )𝑡]cos 𝛽

12𝜇(1 + 8𝜋𝑅ℎ
𝜆2 ) ∙

[ln (2𝐿
𝑅 ) ‒ 0.72]
𝑚2𝑝2𝑅

⋅ 𝑥

For the geometric constraint before and after elongating,2

,𝐿 = 𝑚𝑝0 + 𝑥

,𝑚𝑝 = 𝑚𝑝0 + 𝑥

,4𝜋2𝑅2 + 𝑝2 = 4𝜋2𝑅0
2 + 𝑝0

2

cos 𝛽 =
𝑝0

4𝜋2𝑅0
2 + 𝑝0

2

By substituting the above relations into eqn (S9), one has:

𝜈 =
𝜋𝐺(1 + 𝜐)[(1 + 6ℎ

𝜆 ‒ 12ℎ2

𝜆2 )𝑡3 + (3ℎ2 + 2ℎ3

𝜆 )𝑡] 𝑝0

4𝜋2𝑅0
2 + 𝑝0

2

6𝜇(4ℎ 4𝜋2𝑅0
2 + 𝑝0

2 ‒ (𝑚𝑝0 + 𝑥
𝑚 )2

𝜆2 + 1)
∙

ln [ 4𝜋(𝑚𝑝0 + 𝑥)
4𝜋2𝑅0

2 + 𝑝0
2 ‒ (𝑚𝑝0 + 𝑥

𝑚 )2] ‒ 0.72

(𝑚𝑝0 + 𝑥)2 4𝜋2𝑅0
2 + 𝑝0

2 ‒ (𝑚𝑝0 + 𝑥
𝑚 )2

∙ 𝑥

(S10)

7. Dependence of the flow rate sensing properties on the grating amplitude
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Fig. S6 The flowing rate ( ) vs. the elongation ( ) for the grating-structured microsprings based on eqn 𝜈 𝑥

(S10) ( , , ). The solid curves represent microsprings with a grating 𝐷0 = 15 𝜇𝑚 𝑝0 = 60 𝜇𝑚 𝑚 = 4.0

amplitude of  (red solid line),  (green solid line), and 0 (i.e. the smooth surface) (blue solid 200 𝑛𝑚 100 𝑛𝑚

line), respectively.

In order to study the effect of the geometry of the grating structures on the flow rate 
sensing properties, these well-defined microsprings with a same initial diameter ( ), pitch 𝐷0

( ) and turns (m) were analysed by varying the grating amplitude from  to 0 in a 𝑝0 200 𝑛𝑚
stepwise manner based on eqn (S10). As illustrated in Fig. S6, the microspring was 
elongated longer with decreasing the grating amplitude at a same flow rate, demonstrating 

that the elasticity or the sensitivity ( )2 of the grating-structured microspring can be 
𝑆 = 𝑑𝑥

𝑑𝜈

well tailored by the geometry of the gratings.
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