Supplementary information for the manuscript 'Design principles for helices with tunable pitch and Bernal spirals'

Szilard N. Fejer ${ }^{a, b},{ }^{*}$ Dwaipayan Chakrabarti ${ }^{c}{ }^{\dagger}$ Halim Kusumaatmaja ${ }^{d}{ }^{\ddagger}$ and David J. Wales ${ }^{e \S}$
${ }^{a}$ Department of Chemical Informatics, University of Szeged, Faculty of Education, Boldogasszony sgt. 6, H-6725 Szeged, Hungary
${ }^{b}$ Pro-Vitam Ltd., str. Muncitorilor nr. 16, 520032 Sfantu Gheorghe, Romania
${ }^{c}$ School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
${ }^{d}$ Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
${ }^{e}$ University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom

[^0]
I. SUPPLEMENTARY MOVIE 1 LEGEND

This movie shows the fastest rearrangement mechanism between a 20 particle Bernal spiral and a symmetrical cyclic structure, which is a kinetic trap on the energy landscape for 20 particles. The first four rearrangements along the pathway are low-energy 'hinge' motions.

II. SUPPLEMENTARY MOVIE 2 LEGEND

This movie shows the fastest pathway for inverting the chirality of a left-handed $N=$ 24 helical structure. The rearrangement proceeds exclusively through low-energy 'hinge' motions.

III. SUPPLEMENTARY MOVIE 3 LEGEND

This movie shows the transformation of a 24 -particle spiral into a highly symmetric 'donut'-structure, which is the global minimum for this number of particles. The second rearrangement along the pathway has a high energy barrier, and corresponds to a change in dimerization pattern between the four particles at the lower end of the helix. All other motions are low-energy 'hinge' rearrangements.

[^0]: *Electronic address: szilard.fejer@cantab.net
 ${ }^{\dagger}$ Electronic address: d.chakrabarti@bham.ac.uk
 ${ }^{\ddagger}$ Electronic address: halim.kusumaatmaja@durham.ac.uk
 ${ }^{\text {§ }}$ Electronic address: dw34@cam.ac.uk

