Supplementary Information

Highly Graphitized Nitrogen-Doped Porous Carbon Nanopolyhedra Derived from ZIF-8 Nanocrystals as Efficient Electrocatalysts for Oxygen Reduction Reactions

Linjie Zhang,^{*a,b*} Zixue Su,^{*c*} Feilong Jiang,^{*a*} Lingling Yang,^{*a*} Jinjie Qian^{*a,b*} Youfu Zhou,^{*a*} Wenmu Li,^{*a*} and Maochun Hong^{*,*a*}

^{*a*}Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China

^bUniversity of Chinese Academy of Sciences, Beijing, 100049, P. R. China

^cDepartment of Materials Science, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany

Corresponding Author: <u>hmc@fjirsm.ac.cn</u> (M. Hong)

ORR reactions (Eq. 1-3: multistep two-electron pathway; Eq. 4: one-step direct four-electron pathway)

$$O_{2} + H_{2}O + 2e^{-} \to HO_{2}^{-} + OH^{-}$$

$$HO_{2}^{-} + H_{2}O + 2e^{-} \to 3OH^{-}$$
(1)
(2)

$$2HO_2^- \leftrightarrow O_2 + 2OH^- \tag{3}$$

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^- \tag{4}$$

Calculation of electron transfer number (n)

RDE plots (J^{-1} vs. $\omega^{-1/2}$), were analyzed according to the Koutecky–Levich (**K**–**L**) equation expressed as **Eq. 5** to assess the apparent number of electrons transferred during ORR (*n*) at various potentials:^[1-3]

$$\frac{1}{|J|} = \frac{1}{|J_L|} + \frac{1}{|J_K|} = \frac{1}{B\sqrt{\omega}} + \frac{1}{|J_K|}$$
(5)

$$B = 0.2nFC_0 (D_0)^{2/3} v^{-1/6}$$

In the Koutecky–Levich equation, J, J_L , J_K are the measured current density, the diffusion-limiting current density, and the kinetic-limiting current density, respectively; ω is the rotation speed in rpm, F is the Faraday constant (96,485 C mol⁻¹), D_0 is the diffusion coefficient of oxygen in 0.1 M KOH (1.9×10^{-5} cm² s⁻¹), v is the kinetic viscosity (0.01 cm² s⁻¹), and C_0 is the bulk concentration of oxygen (1.2×10^{-6} mol cm⁻³). 0.2 is a constant when the rotation speed is expressed in rpm. The *n* can be extracted from the slope of the K–L plot.

The transferred electron number per oxygen molecule (*n*) during ORR can be also calculated from Eq. 6 based on RRDE measurements,^[4-5]

$$n = \frac{4I_D}{I_D + \frac{I_R}{N}}$$
(6)

and the H₂O selectivity can be analyzed from the following equation:

T

Selectivity_{*H*₂*O*} =
$$\frac{I_D - \frac{I_R}{N}}{I_D + \frac{I_R}{N}} \times 100 = \frac{n-2}{2} \times 100$$
 (7)

where I_D , I_R , and N = 0.30 are the disk current, ring current, and collection efficiency of Pt ring obtained by using the one-electron Fe(CN)₆^{3-/4-} redox couple, according to the manufacture's instruction, respectively.

References:

- A. J. Bard, L. R. Faulkner, *Electrochemical Methods: Fundamental and Applications*, Wiley-VCH, New York, 2001, ch. 9, 331-367.
- 2. D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, Energy Environ. Sci., 2011, 4, 760-764.
- 3. H. Li, H. Liu, Z. Jong, W. Qu, D. Geng, X. Sun, H. Wang, Int. J. Hydrog. Energy, 2011, 36, 2258-2265.
- 4. K.P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science, 2009, 323, 760-764.
- L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed., 2011, 50, 7132-7135.

Fig. S1 PXRD diagrams of various pyrolytic products of ZIF-8 nanocrystals at different carbonization temperatures.

Fig. S2 TGA (black) and DSC (blue) curves of ZIF-8 nanocrystals.

Fig. S3 Raman spectra of NGPCs obtained from 700 to 900 °C.

Fig. S4 Representative FE-SEM images of different NGPCs. The particle size decreased gradually as the temperature and carbonization time increased.

Fig. S5 Representative TEM images of different NGPCs. The surface morphologies of the samples changed from smooth surface to rough surface obviously.

Fig. S6 a) TEM images of NGPCs with cage-like structures; b) and c) enlarged TEM images shown in the rectangular area marked in a); e) to g) HR-TEM images taken from the edges of the particles in a), showing the highly graphitized feature of the NGPCs.

Fig. S7 Typical TEM images of rhombic dodecahedron-like NGPCs with crumpled surfaces.

Fig. S8 Typical energy dispersive spectrum (EDS) of NGPC-1000-10.

Fig. S9 Nitrogen sorption isotherms (77 K) of NGPCs obtained from different carbonization temperatures and carbonization times.

Fig. S10 NL-DFT pore size distributions of NGPCs obtained from different carbonization temperatures and carbonization times.

Fig. S11 Nitrogen sorption isotherms (77 K) of NGPC-700-5 sample without acid wash. Inset is the corresponding NL-DFT pore size distribution curve, showing the dominantly meso/macroporosity caused by inter-particle sorption.

Fig. S12 Deconvoluted C1s spectrum of NGPCs obtained from different carbonization temperatures and carbonization times.

Fig. S13 Deconvoluted N1s spectrum of NGPCs obtained from different carbonization temperatures and carbonization times.

Table S1. C, O, N content and N dopant state of different NGPCs catalysts derived from the XPS analysis.

	С	0	Ν	Relative content of different N species to total N			(N1+N2)/N	
Sample	(at.%)	(at.%)	(at.%)	N1	N2	N3	N4	$(1 \times 1 \times 1 \times 3)/1 \times 10^{-1}$
NGPC-700-5	68.58	7.52	23.90	0.58	0.35	0.07	N/A	0.65
NGPC-800-5	71.40	7.36	21.24	0.59	0.28	0.09	0.04	0.68
NGPC-900-5	76.26	7.02	16.72	0.57	0.21	0.17	0.05	0.74
NGPC-1000-1	84.62	6.92	8.46	0.61	0.04	0.29	0.06	0.90
NGPC-1000-5	86.90	7.28	5.82	0.58	0.03	0.31	0.08	0.89
NGPC-1000-10	89.33	5.94	4.73	0.46	0.02	0.41	0.11	0.87

Fig. S14 FT-IR spectra of pyrolytic products of ZIF-8 NCs at different carbonization temperatures.

Fig. S15 CV curves of different NGPC samples, GPC-1000-5 and commercial 20 wt.% Pt/C sample (red line, N₂; blue line, O₂) in 0.1 M KOH solution (scan rate: 10 mV s⁻¹).

Fig. S16 LSV curves in O₂-saturated 0.1 M KOH solution with a sweep rate of 5 mV s⁻¹ at different rotation rates and the corresponding K–L plots for different ORR catalysts. a, b) NGPC-700-5; c, d) NGPC-800-5; e, f) NGPC-900-5; g, h) NGPC-1000-1; i, j) NGPC-1000-5; k, l) NGPC-1000-10; m, n) GPC-1000-5 and o, p) 20 wt.% Pt/C.

Fig. S17 Electron-transfer numbers as a function of the overpotential of NGPCs obtained at 1000 °C and commercial 20 wt.% Pt/C catalyst, respectively.

Fig. S18 Structural view (left) and powder X-ray diagram (right) of as-synthesized $[Zn_4O(bdc)_3]$ (MOF-5). Eight clusters (four visible) from an unit cell enclose a large cavity with diameter of 18.5 Å, indicated by a yellow sphere.

Fig. S19 PXRD diagram of MOF-5 derived carbon samples (GPC-1000-5); the insets are the enlargement of PXRD at position with 2θ value from 20° to 30° (left) and the corresponding Raman spectrum of the GPC-1000-5 (right).

Fig. S20 Nitrogen sorption isotherms of MOF-5 derived carbon sample (GPC-1000-5) at 77 K, the inset gives the corresponding NL-DFT pore size distribution of the product.

Fig. S21 Polarization curves of NGPC-800-5 with or without acid wash treatment. The results are obtained at conditions of 1600 rpm in an O_2 -saturated 0.1 M KOH *aq*. solution at R.T., and a sweep rate of 5 mV s⁻¹.

Fig. S22 a) CV and b) LSV curves of commercial Pt/C in O_2 -saturated 0.1 M KOH solution with or without the addition of 3 M MeOH. The RDE measurements were carried out with a sweep rate of 5 mV s⁻¹, 1600 rpm.

Fig. S23 CV curves of NGPC-1000-10 in O_2 -saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹, with or without the addition of 3 M methanol.

Table S2 Summary of ORR performance for some other nitrogen-doped metal-free catalysts and MOF-derived non-precious metal electrocatalysts (M/N/C) reported recently.

Heteroatom- doped carbon materials ^a	Synthetic methods (reaction precursors)	ORR performance <i>vs.</i> Pt/C^{b}	Electron transfer number	Refs.
NGPC-1000-10	Nanaocasting of	35 mV more negative in E_{onset} ,	3.80-3.89	Present work
	ZIF-8 nanocrystals	comparable $J_{\rm L}$ of 4.67 mA cm ⁻² and	at range of	
		$J_{\rm K}$ of 14.18 mA cm ⁻² at -0.35 V.	-0.25 to -0.6 V	
POF-C-1000	Nanocasting of	40 mV more negative in E_{onset} ,	3.75 at -0.44 V	1
	PAF-6 and	0.8 and 55 mA cm ⁻² less in $J_{\rm L}$ and	vs. Hg/HgO	
	furfuryl alcohol	$J_{\rm K}$ at –0.60 and –0.44 V vs. Hg/HgO		
NCNFs	Carbonization of	45 mV more negative in E_{onset} ,	3.6-4.0	2
	electrospun polyacrylonitrile	<i>ca.</i> 1.0 mA cm ⁻² less in $J_{\rm L}$	at range of	
	nanofiber films		-0.35 to -0.50 V	
PN-ACNT	CVD with ferrocene,	80 mV more negative in E_{onset} ,	3.67–3.88	3

	pyridine and	higher cathodic current density	at -0.3 to -0.6 V	
	triphenylphosphine	below ca0.25 V vs.SCE	vs.SCE	
N-S-G	Melamine, benzyl disulfide,	30 mV more negative in E_{onset} ,	3.3–3.6	4
	graphene oxide with SiO ₂	comparable $J_{\rm L}$ and nearly twice	at most potential	
	as template	higher in $J_{\rm K}$ at -0.80 V		
NCNTs(BTA)	Carbonization of	80 mV more negative in E_{onset} ,	3.62 at -0.5 V	5
	MWCNTs with Triazole	comparable $J_{\rm L}$ at –0.9 V vs. SCE and	vs.SCE	
	and tetrazole derivatives	1.0 mA cm ⁻² higher in $J_{\rm K}$ at		
		-0.5 V <i>vs</i> .SCE		
N-HCNPs	CVD with trinitrophenol	90 mV more negative in E_{onset} ,	3.70 at -0.4 V	6
	under high temperature	comparable $J_{\rm L}$ at 1500 rpm and $J_{\rm K}$ at		
	and pressure	potential range of -0.3 to -0.4 V		
CA-TCA_900	Hydrothermal carbonization	210 mV more negative in E_{onset} ,	<i>ca</i> . 2.6–3.7 at	7
	with glucose/TCA	comparable $J_{\rm L}$ at 1600 rpm	range of -0.4 to -	
			1.0 V	
NG-1000	Direct annealing of	70 mV more negative in E_{onset} ,	3.89 at -0.5 V	8
	graphene oxide/PDA	comparable $J_{\rm L}$ at 1600 rpm and $J_{\rm K}$ at	vs. SCE	
		potential of -0.5 V vs. SCE		
Acr@MW	Hydrothermally	38 mV more negative in E_{onset} ,	3.2 at -1.0 V	9
	functionization of MWCNTs	comparable $J_{\rm L}$ at 800 rpm		
	with aniline derivatives			
POMC-3	Nanocasting of	50 mV more negative in E_{onset} ,	3.91 at -0.25 V	10
	SBA-15/triphenylphosphine	comparable $J_{\rm L}$ at 1600 rpm		
NG-NCNT	Hydrothermal treatment with	70 mV more negative in E_{onset} ,	3.3-3.7 at range of	11
	Graphene oxide/oxidized	comparable $J_{\rm L}$ at 1600 rpm	-0.4 to -0.7 V vs.	
	MWCNTs/ammonia		SCE	
NCNTs-20	Direct carbonization of	7 mV more positive in $E_{1/2}$,	Not mentioned	12
	Zn-Fe-ZIF/dicyandiamide	<i>ca.</i> 0.7 mA cm ⁻² higher in $J_{\rm L}$ at 1600 rpm		

^a The samples listed in the table are the most efficient one chosen out from those reported in the corresponding literatures, respectively.

^b All potentials are referred as Ag/AgCl scale, unless otherwise stated.

For comparison, all samples are tested in 0.1 M KOH solution under room temperature, unless otherwise stated.

The limiting current densities (J_L) are compared at a rotation speed of 1600 rpm, unless otherwise stated.

References

- 1. P. Pachfule, V. M. Dhavale, S. Kandambeth, S. Kurungot and R. Banerjee, Chem.-Eur. J., 2013, 19, 974-980.
- 2. D. Liu, X. Zhang, Z. Sun and T. You, Nanoscale, 2013, 5, 9528-9531.
- 3. D. Yu, Y. Xue and L. Dai, J. Phys. Chem. Lett., 2012, 3, 2863-2870.
- 4. J. Liang, Y. Jiao, M. Jaroniec and S. Z. Qiao, Angew. Chem., Int. Ed., 2012, 51, 11496-11500.
- 5. A. Morozan, P. Jégou, M. Pinault, S. Campidelli, B. Jousselme and S. Palacin, ChemSusChem, 2012, 5, 647-651.
- 6. G. Ma, R. Jia, J. Zhao, Z. Wang, C. Song, S. Jia and Z. Zhu, J. Phys. Chem. C, 2011, 115, 25148-25154.
- 7. S.-A. Wohlgemuth, R. J. White, M.-G. Willinger, M.-M. Titirici and M. Antonietti, Green Chem., 2012, 14, 1515-1523.
- 8. H. P. Cong, P. Wang, M. Gong and S. H. Yu, Nano Energy, 2014, 3, 55-63.

- 9. G. Tuci, C. Zafferoni, P. D'Ambrosio, S. Caporali, M. Ceppatelli, A. Rossin, T. Tsoufis, M. Innocenti and G. Giambastiani, ACS Catal., 2013, **3**, 2108-2111.
- 10. D.-S. Yang, D. Bhattacharjya, S. Inamdar, J. Park and J.-S. Yu, J. Am. Chem. Soc., 2012, 134, 16127-16130.
- 11. P. Chen, T. Y. Xiao, Y. H. Qian, S. S. Li and S. H. Yu, Adv. Mater., 2013, 25, 3192-3196.
- 12. P. Su, H. Xiao, J. Zhao, Y. Yao, Z. Shao, C. Li and Q. Yang, Chem. Sci., 2013, 4, 2941-2946.