Engineering Cu₂O/NiO/Cu₂MoS₄ Hybrid Photocathode for H₂ Generation in Water

Chen Yang,^{*a,b*} Phong D. Tran,^{*a,b**} Pablo P. Boix,^{*b*} Prince S. Bassi,^{*a*} Natalia Yantara,^{*b*} Lydia. H. Wong,^{*a**} James Barber^{*a,c*}

^aSolar Fuel Laboratory, School of Materials Science & Engineering, Nanyang Technological University, Singapore. Email: <u>Lydia.wong@ntu.edu.sg</u>

^bEnergy Research Institute @ Nanyang Technological University (ERI@N), Singapore. Email: <u>dptran@ntu.edu.sg</u>

^cDivision of Molecular Biosciences, Department of Life Sciences, Imperial College London, UK

Supporting Information

General: Chemical compounds were used as received from Sigma Aldrich without further purification. Fluorine-doped tin oxide (FTO, 400 nm) coated on glass substrate (2.2 mm) having sheet resistance of 14 Ohm/sq was purchased from NSG group. FTO electrodes were intensively cleaned by subsequent ultrasonicating in acetone, ethanol and DI water and kept in DI water. Prior to used, these FTO electrodes were dried with a N₂ flux. Cu_2MoS_4 nanopowders were prepared as described previously.¹

Cu₂O thin film deposition. Cu₂O thin films were electrodeposited on FTO electrode from a 0.4 M CuSO₄ bath containing 3 M lactic acid, employing a conventional three electrodes configuration. pH of the deposition bath was carefully adjusted to pH 12.0 by adding 4 M NaOH. FTO electrode was hold at constant cathodic potential of -0.4V *vs* Ag/AgCl reference. Film thickness was controlled by counting charge passing through the working electrode. The deposition was ended when the charge density value reached 2C.cm⁻².

NiO layer deposition. 50 μ L of a 0.5M nickel (II) acetate (Ni(OAc)₂) solution in 2methoxyethanol containing 0.5 M ethanolamine was spin-coated on the Cu₂O electrode (geometrical surface area of 2.25 cm²) with 3000 rpm for 30 s, followed by annealing in air at 220 °C for 30 min. The thickness of the NiO layer on the Cu₂O electrode was controlled by repeating this process N (N=1-5) times. **Coating Cu₂MoS₄ electrocatalyst layer**. A stock suspension was prepared by dispersing 8 mg Cu₂MoS₄ nanopowders in 2 mL H₂O/ Ethanol (v/v =4/1) mixture with aid of ultrasonication for 2 hours. 50 μ L of the stock suspension was drop-casted on 2.25 cm² Cu₂O/NiO electrode surface. Obtained hybrid electrodes Cu₂O/NiO/Cu₂MoS₄ were air-dried prior used for characterization.

Characterization

Field Emission Scanning Electron Microscopic (FESEM) was carried out using a JEOL JSM-7600F scanning electron microscope to obtain surface morphology information as well as the film thickness. The phase and crystallinity were investigated by X-ray diffractometer (XRD, X'pert Pro MRD, Philips, using Cu K α radiation $\lambda = 1.54$ Å).

The chemical composition and the valance band-to-Fermi level difference were investigated by X-ray Photoelectron Spectroscopy (XPS) using an ultrahigh vacuum VG ESCALAB 220i-XL system equipped with a monochromatic Al $K\alpha$ (1486.6eV) source. The pressure in the analysis chamber was kept in the 10⁻¹⁰ Torr range. The hemispherical energy analyzer was calibrated with gold, silver and copper polycrystalline standard samples by setting the Au4f_{7/2}, Ag3d_{5/2} and Cu2p_{3/2} peaks at binding energies of 83.98±0.02, 368.26±0.02 and 932.67±0.02 eV.

Assay photoelectrochemical properties of Cu₂O-based photocathodes

The photoelectrochemical measurement was conducted on a potential station (CHI 660D work station) with employing a conventional three electrodes configuration. Platinum wire and Ag/AgCl/ 3M KCl were employed as counter and reference electrodes, respectively. Cu₂O working electrode (photoactive area of ~ 0.23cm²) was illuminated from back-side (glass side) by 1 Sun light generated from a simulated AM 1.5 light source. The electrolyte was a 1.0M Na₂SO₄ solution buffered by 1M NaHSO₄ to pH 5. Prior to measurement, the electrolyte solution was intensively saturated with N₂ gas to remove solubilized O₂. Potential scan rate for the linear sweep voltammetry and for the cyclic voltammetry analysis was 20mV.s⁻¹. Photocurrent stability tests were carried out by measuring the photocurrent produced under chopped light irradiation (light/dark cycles of 20 s) at a fixed electrode potential.

All potentials are quoted versus the *Reversible Hydrogen Electrode* (RHE) by using the following equation:

 $E_{vs. RHE} = E_{vs. Ag/AgCl} + 0.059pH + 0.21V$

To quantify produced H_2 , a gas-tight closed electrochemical cell was employed. The counter electrode and reference electrode were Pt wire and Ag/AgCl/ 3M KCl, respectively. Cu₂O-based photocathode having photoactive surface area of 1.5cm^2 was hold at a fixed potential (+0.3V *vs.* RHE) and under 1 Sun illumination for a period of 30 min. Once the bulk photo-electrolysis was over, photo-generated H_2 gas was quantified using a gas chromatography equipped thermal couple detector (TDC).

Electrochemical impedance spectroscopy (EIS) analysis was conducted for Cu₂O-based photoelectrodes employing the same three-electrode configuration stated this above. The measurements were performed with a potentiostat Autolab PGSTAT-30 equipped with a frequency analyser module. The Cu₂O-based photocathodes were hold at +0.3V *vs*. RHE under 1 Sun illumination. A small voltage perturbation (20 mV rms) was applied with frequencies ranging between 100 kHz and 0.1 Hz. The results were fitted to the equivalent circuit presented in **figure S10** with a ZView software by Scribner Associated.

Figure S1: SEM cross-section analysis for a Cu_2O thin film electrodeposited on a FTO electrode

Figure S2: Photocurrent-to- H_2 yield (Faradaic efficiency) calculated on the basis of bulk photoelectrolysis experiments at +0.3V vs. RHE employing a Cu₂O (red curve) or a Cu₂O/NiO/Cu₂MoS₄ (black curve), or at 0V vs. RHE employing a Cu₂O/NiO (blue curve) photocathode without Cu₂MoS₄ co-catalyst.

Figure S3: *XRD pattern of a Cu*₂*O photoelectrode after 30min photoelectrolysis in pH 5* Na_2SO_4 solution, under 1 Sun illumination at +0.3V vs. RHE

Figure S4: Diffuse reflectance UV-vis absorption spectrum of Cu₂MoS₄

Figure S5: Anodic photocurrent collected on a NiO/Cu₂MoS₄ electrode under 1 Sun chopped light illumination at applied potential of +0.3V vs. RHE. Electrolyte was a pH 5 Na₂SO₄ solution.

Figure S6: *EDX analysis performed on an as-prepared* Cu_2O/NiO *electrode. Au signal comes from sputtered conductive Au films*

Figure S7: SEM analysis cross-section view for a NiO film deposited on FTO substrate by repeating 10 deposition cycles (N=10).

Figure S8: Photoelectrochemical properties of Cu_2O/NiO photoelectrodes with varied NiO thickness. N represents number of NiO deposition cycles. Average NiO thickness was estimated to be 16nm per deposition cycle.

Figure S9: Photocurrent generated employing a $Cu_2O/NiO/Cu_2MoS_4$ hybrid photocathode under 1 Sun illumination in pH 5 Na_2SO_4 electrolyte solution at applied bias of 0 and +0.3V vs. RHE.

Figure S10: Nyquist plots analysis performed on Cu_2O/Cu_2MoS_4 hybrid photocathode with and without a NiO interlayer. The solid lines represent the fittings using the model in the inset. Electrolyte was a pH 5 Na_2SO_4 buffered solution. Electrodes were hold at +0.3V vs. RHE under 1 Sun illumination.

Figure S11: *High-resolution valence-band XPS spectra shows the difference of the Fermi level and valance band of NiO is only around 300 mV.*

Table S1: Parameters extracted from	om the fitting of	^c the data in j	figure S10.
-------------------------------------	-------------------	----------------------------	-------------

Cell	${f R}_{{ m high freq}}$ $(\pm 15~\Omega)$	C _{high freq} (± 0.5·10 ⁻⁸ F)	R _{low freq} (±160 Ω)	C _{low freq} (± 0.5·10 ⁻⁵ F)
Cu ₂ O/Cu ₂ MoS ₄	651	$4.1 \cdot 10^{-8}$	2620	$3.6 \cdot 10^{-5}$
Cu ₂ O/NiO/Cu ₂ MoS ₄	211	$1.6 \cdot 10^{-8}$	2780	$4.7 \cdot 10^{-5}$

References

1 Tran, P. D. *et al.* Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water. *Energy & Environmental Science* **5**, 8912, doi:10.1039/c2ee22611a (2012).