Supplementary Information

Incorporation of a self-aligned selective emitter to realize highly efficient (12.8%) Si nanowire solar cells

Han-Don Um,^{a,†} Kwang-Tae Park,^{a,†} Jin-Young Jung,^a Xiaopeng Li,^{b,c} Keya Zhou,^a Sang-Won Jee^a and Jung-Ho Lee^{*a}

^aDepartment of Materials and Chemical Engineering, Hanyang University, Ansan, 426-791, Korea.

^bMax-Plank Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.

^cFraunhofer Institute for Mechanics of Materials, Walter-Hülse-Str. 1, 06120 Halle, Germany.

[†]These authors contributed equally to this work.

Email: jungho@hanyang.ac.kr

Figure S1. FETEM images of (a) porous Si at the NW tip, (b) tiny Ag NPs, and (c) dense Si at the bottom of a NW.

Figure S2. Reflectance spectra of planar and selective-emitter NW cells.

Figure S3. Schematics of (a) planar, (b) selective-emitter-NW, and (c) conventional NW solar cells used to measure contact resistivity using the transmission line model.

