## Supporting Information

## Highly Conducting Graphene Film with Dual-Side Molecular n-Doping

Youngsoo Kim,<sup>*a,b†*</sup> Jaesung Park,<sup>*c†*</sup> Junmo Kang,<sup>*e*</sup> Je Min Yoo, <sup>*a*</sup> Kyoungjun Choi, <sup>*a*</sup> Eun Sun Kim,<sup>*a*</sup> Jae-Boong Choi,<sup>*e*</sup> Chanyong Hwang, <sup>*c*</sup> K. S. Novoselov<sup>*d*</sup> and Byung Hee Hong <sup>*a*\*</sup>

<sup>a</sup> Department of Chemistry & <sup>b</sup> Department of Physics & Astronomy, Seoul National University, 1 Gwanak-ro, Seoul 151-742, Korea.

<sup>c</sup> Center for Nanometrology, Korea Research Institute of Standards and Science, Gajeong-Ro, Daejon 305-340, Korea

<sup>d</sup> School of Physics and Astronomy, University of Manchester, M13 9PL Manchester, United Kingdom

<sup>e</sup> Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Seobu-ro, Suwon 440-746, Korea

†These authors contributed equally to this work.

\*Corresponding Author

\* e-mail: byunghee@snu.ac.kr



**Figure S1**. (a) Representative UV-Vis spectra of top, bottom and dual-side doped graphene film (b) Transmittance of pristine, top-side doped, bottom-side doped and dual-side doped graphene.



**Figure S2.** (a) The Dirac voltage shift of dual-side doped graphene as a function of exposure time in the ambient condition at room temperature (b) Light stability of dual-side doped graphene with respect to exposure time (100 W light bulb was used as a light source). (c) Thermal stability of dual-side doped graphene with heating time under 70  $^{\circ}$ C (blue) and 100  $^{\circ}$ C (red).



Figure S3. FET characteristics of DETA-doped graphene with respect to doping time and temperature. (a, b) Change in Dirac curves with respect to doping time at 25 °C and 100 °C, respectively.
(c) Change in electron and hole mobility with respect to doping time at 100 °C.



**Figure S4. Statistical analysis of temperature distribution in the graphene-based heaters.** (a) a pristine graphene-based heater, (b) a bottom doped graphene-based heater, and (c) a dual-side doped graphene heater. The insets show the corresponding infrared images at the steady state temperature at 20V.