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Table S1. Summary of solvent volume and reagent amounts used in each addition step 
for the synthesis of samples A-F, and their sizes after different growth steps.

Sample
D / nm

Growth
step

Dibenzyl 
ether
/ml

Seed 1,2-
hexadecanediol

/mmol

Fe(CO)5
/mmol

RCOOH
/mmol

R-NH2
/mmol

A
4.3

1 20 -- 20 0.75 1 6

B
7.7

3 20 -- 20 1. 0.75
2. 3.3
3. 7.7

1. 1
2. 2
3. 3.25

1. 6
2. 6
3. 6

D
11.9

4 20 -- 20 1. 0.75
2. 3.3
3. 7.7
4. 14

1. 1
2. 2
3. 3.25
1. 4.3

1. 6
2. 6
3. 6
1. 6

E
14.9

5 20 -- 20 1. 0.75
2. 3.3
3. 7.7
4. 14
5. 22

1. 1
2. 2
3. 3.25
4. 4.3
5. 5.44

1. 6
2. 6
3. 6
4. 6
5. 6

F
11.1

5 20 -- 10 1. 0.375
2. 1.65
3. 3.85
4. 7
5. 11

1. 0.5
2. 1
3. 1.625
4. 2.15
5. 2.72

1. 3
2. 3
3. 3
4. 3
6. 3

C
10.6

3+1 20 260 mg
of 

sample B

15 4. 5.3 4. 7 4. 6



Figure S1_a. Diffractograms of samples A-E



Figure S1_b. Deconvolution of (311) diffraction peak of Fe3O4 for samples A-F.

The crystallite size has been calculated by the deconvolution of the (311) diffraction 
peak and using the Scherrer equation (1):





cos.estrucB

KD (1)

Where K is the shape factor (0.95), Bstructure = Bobserved-Binstrumental , the full width at half 
maximum, =(Kα1+Kα2)/2=1.5418Å, and θ peak position.

Table S2. Parameters obtained from (311) diffraction peak deconvolution and 
calculated crystallite size using Scherrer equation*.

Sample B obs. 
/ °2θ

B inst. 
/ °2θ

Peak pos. 
 / °2θ

B struct. 
/°2θ

Crystallite size 
/ nm

A 2.069 0.120 35.722 1.949 4.5(±0.5)
B 1.219 0.120 35.750 1.099 8.0(±0.5)
C 0.949 0.120 35.725 0.829 10.5(±0.5)
F 0.927 0.120 35.566 0.807 11.0(±0.5)
D 0.826 0.120 35.539 0.690 12.0(±0.5)
E 0.763 0.120 35.657 0.643 14.0(±0.5)

*Mean sizes have one significant digit due to the uncertainty of calculation.



Figure S2. FTIR spectra of (a) pure oleic acid and (b) Fe3O4 nanoparticles coated with 
oleic acid in sample D

.



Figure S3. ZFC/FC curves of powder samples A-E, obtained under an applied field of 
10 Oe.



Figure S4. Hysteresis loops at room temperature of powder samples A-F a), b) and of 
colloidal dispersion embedded in polystyrene c). 



Figure S5. Hysteresis loops at 5 K of powder samples A-F a) and of colloidal 
dispersion embedded in polystyrene b). 



Model S1. Non-Interacting Super-Paramagnetic (SPM) model.

Magnetization in Single Domain Particles:

The present calculation of magnetization for an assembly of single magnetic domain 
particles is based in the following assumptions:

1. The population of nanoparticles is composed of single domains with uniaxial 
anisotropy, being their easy axes oriented at random.

2. Interparticle dipolar interactions are negligible so that the assembly is a set of 
independent single magnetic domains.

The second condition is quite hard to fulfill in a real nanoparticle system; as a 
consequence, in order to characterize the magnetic properties of individual particles, 
e.g. magnetic moment, size and effective anisotropy, the use of enough diluted samples 
becomes imperative, either by using small concentrated colloids or solid samples 
dispersed in non-metallic matrix.

Non-Interacting SPM model: magnetization as a function of external magnetic field.

Langevin equation.

Let us suppose a set of magnetic nanoparticles composed of single magnetic domains 
with their easy axis oriented in any direction of the space with equal probability, i.e., at 
random. Under the condition , for a given T, the particles are in the 𝑘𝐵𝑇 ≫ 𝐾𝑉

superparamagnetic state (SPM) and for any particle, its energy (EB) under an external 
magnetic field (H) is given by the scalar product of its magnetic moment  by the 𝜇

magnetic field H: . Classical Boltzman statistics states that the number of 𝐸𝐵 =‒ 𝜇𝐻𝑐𝑜𝑠𝜃

magnetic moments  forming an angle between  and  relative to the external 𝑑𝑛 𝜃 𝜗 + 𝑑𝜃

magnetic field, is proportional to: , where the differential area is 𝑑𝐴exp (𝜇𝐻𝑐𝑜𝑠𝜃/𝑘𝐵𝑇)

  (for a sphere of unit radius). In this way, it can be said that: 𝑑𝐴 = 2𝜋𝑠𝑖𝑛𝜃𝑑𝜃

, where C is a proportionality constant fixed by the 𝑑𝑛 = 𝐶 2𝜋𝑠𝑖𝑛𝜃𝑑𝜃exp (𝜇𝐻𝑐𝑜𝑠𝜃/𝑘𝐵𝑇)

normalizing condition: , the total number of particles.

𝑛

∫
0

𝑑𝑛 = 𝑛

The contribution of these magnetic moments to the whole is given by , and 𝜇𝑐𝑜𝑠𝜃𝑑𝑛

therefore the total magnetization, will be the sum of these contributions: 

, where . The integral can be solved 
𝑀 = 2𝜋𝐶𝜇

𝜋

∫
0

𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃exp (𝑥𝜇)𝑑𝜃
𝑥 = 𝜇𝐻/𝑘𝐵𝑇

analytically, and then the magnetization is finally given by: . 𝑀 = 𝑛𝜇(coth (𝑥) ‒ 1/𝑥)

Considering that saturation magnetization , the function  will follow the so-𝑀𝑆 = 𝑛𝜇 𝑀(𝐻)

called Langevin equation:

𝑀(𝐻) = 𝑀𝑆[coth ( 𝜇𝐻
𝑘𝐵𝑇) ‒

𝑘𝐵𝑇
𝜇𝐻 ] = 𝑀𝑆𝐿( 𝜇𝐻

𝑘𝐵𝑇) (2)



Effect of size distribution.

In a real sample, the size of nanoparticles is not perfectly defined but is typically 
distributed around some value, a most probable size for instance. The analysis of TEM 
images usually supplies a histogram of sizes, i.e., a set of numbers, each of which 
represents a probability of finding that size in the assembly. Such size distributions can 
be usually fitted to Gaussian or Log-normal functions. In general, this probability 
function will be given by , so that the total magnetization of the assembly can be 𝑓(𝐷)

calculated as a sum (integral) over all the sizes (diameter D) in the distribution:

𝑀(𝐻) = 𝑀𝑆

∞

∫
0

𝐿( 𝜇𝐻
𝑘𝐵𝑇)𝑓(𝐷)𝑑𝐷

(3)

where saturation magnetization, , is the same for all the particles in the population. In 𝑀𝑆

principle, the saturation magnetization units are arbitrary because the only requirement 
is that  should match the experimental magnetization that can be normalized in 𝑀𝑆

different ways. Taking into account that , the final expression for the function 𝜇 = 𝑀𝑉

 is the following one:𝑀(𝐻)

𝑀(𝐻) = 𝑀𝑠(𝑒𝑚𝑢
𝑔 )

∞

∫
0

𝐿(𝑀(𝑒𝑚𝑢/𝑐𝑚3)𝑉𝐻(𝑂𝑒)
𝑘𝐵𝑇 )𝑓(𝐷)𝑑𝐷

(4)

From a practical point of view, the upper limit for numerical integration of equation (4) 
corresponds to a high enough diameter (usually 50 nm). Inside the brackets of the 
Langevin function, physical variables are in gaussian unit. Note that units of , 𝑀𝑠 (𝑒𝑚𝑢/𝑔)

should be the same as the experimental one (taken as emu/g in this case).  is 𝑀𝑠 (𝑒𝑚𝑢/𝑔)

considered as a variable independent of  (different units are used for 𝑀(𝑒𝑚𝑢/𝑐𝑚3)
clarity). Both variables should be linked by the inorganic content of the sample. In a 
normal fitting  is fixed a priori, for instance, to the theoretical value of 𝑀(𝑒𝑚𝑢/𝑐𝑚3)
magnetite. In this way, the fit provides a value for the mean size and dispersity, which 
does not depend on the proper normalization of the experimental magnetization.



Figure S6_a. Fit of M(H) curves at room temperature by SPM model of powder 
samples (C and E). 



Figure S6_b. Fit of M(H) curves at room temperature by SPM model of colloidal 
dispersion embedded in polystyrene (A-E). 



Model S2. Calculation of SAR as a function of mean diameter.

The value of SAR for any  (mean diameter) is calculated by the convolution of SAR �̅�

versus diameter function, , with a distribution function accounting for size  𝑃𝑆𝑃𝑀(𝐷)

dispersity, :𝑓(𝐷)

𝑆𝐴𝑅(�̅�) =

𝐷𝑚𝑎𝑥

∫
0

𝑃𝑆𝑃𝑀(�̅�)𝑓(𝐷)𝑑𝐷
(5)

SAR or absorption power  is given by:𝑃𝑆𝑃𝑀

𝑃𝑆𝑃𝑀 = 𝜇0𝜋𝑓𝜒''𝐻2 (6)

where  is the imaginary part of complex susceptibility, and  the DC susceptibility at 𝜒'' 𝜒0

low fields:

𝜒''(𝜔) = 𝜒0
𝜔𝜏𝑒𝑓𝑓

1 + (𝜔𝜏𝑒𝑓𝑓)2          𝜒0 =
𝜇0𝑀2

𝑆𝑉
3𝑘𝐵𝑇 (7)

being , the effective relaxation time, resulting from the superposition of Neel 𝜏𝑒𝑓𝑓

relaxation (  and Brownian relaxation ( ).𝜏𝑁) 𝜏𝐵

1
𝜏𝑒𝑓𝑓

= 1
𝜏𝑁

+ 1
𝜏𝐵

(8)

Neel relaxation time can be calculated by:

𝜏𝑁 =
𝜏0
2 (𝜋𝑘𝐵𝑇

𝐾𝑉 )1/2𝑒
𝐾𝑉/𝑘𝐵𝑇

(9)

where  is the inverse of the so-called frequency of jump attempts, usually between  10-𝜏0

9 and 10-11 s.  is the particle volume,  the effective anisotropy constant and  is the 𝑉 𝐾 𝑘𝐵

Boltzmann constant. 
The Brownian relaxation time is given by:

𝜏𝐵 =
4𝜋𝜂𝑟3

ℎ
𝑘𝐵𝑇 (10)

Where  is the viscosity of the solvent, and rh the hydrodynamic radius. In the 𝜂

calculation, it is assumed that the effective anisotropy constant is composed of two 
contributions, , coming from the particle core and  from the shell (or 𝐾𝑣(𝐽/𝑚3) 𝐾𝑠(𝐽/𝑚2)

surface):

𝐾 = 𝐾𝑣 +
6𝐾𝑠

𝐷 (11)



In equation (5)  is any arbitrary distribution of sizes, given in this case by the well 𝑓(𝐷)

known Gaussian function:

𝑓(𝐷, �̅�,𝜎) = 1
𝜎 2𝜋 ∙ 𝑒𝑥𝑝( ‒ (𝐷 ‒ �̅�)2

2𝜎2 ) (12)

where , the mean diameter, and , the standard deviation, 𝐷 𝜎

Calculation of SAR as a function of mean diameter has been carried out assuming the 
following parameters

T=300 K  
H=10 kA/m
f =850 kHz
Ms=450 kA/m (experimental value at RT, deduced from saturation magnetization)
Fe3O4=5,24 g/cm3

ηtoluene=0.55 mPa·s
Dhidrod.= Dinorg.+1
Kv=10 kJ/m3

Ks=15 μJ/m2 

β=0.15 (experimental value)
τ0=10-10s 



Figure S7. SAR values as a function of frequency under an AC magnetic field of 10 
kA/m for sample E before and after washing process.


