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Experimental part

Measurements of macroscopic viscosity of protein
solutions
We measured the relative viscosityηr of BSA and lysozyme
solutions at pH=4.7 and at pH=7.0, respectively. Ionic
strength of the solutions of both proteins was kept at the level
of I=154 mM. We used a custom designed steel capillary
viscometer consisting of a small syringe (5 ml, Polfa, Poland)
and a two-meter thin capillary (I.D. 205 µm, Mifam, Poland)
connecting the syringe with a collecting vessel placed on
a balance (Radwag, XA/2X). The syringe was pressurized
by an outer compressor using a manual pressure regulator.
Custom-written software (LabWindows/CVI) allowed us to
record weight changes of the collecting vessel. We measured
the flow times of given fluid and reference fluid with known
viscosity – water (Millipore, viscosityη0 = 0.890 mPa·s,
densityρH

2
O = 997 kg·m−3). The temperature of the whole

system was stabilized by a styrofoam box. The viscosity
of a given fluid was calculated on the basis of equation:
ηm/η0 = ρt/

(

ρH
2
OtH

2
O

)

whereηm - viscosity,ρ - density
and t - flow time (the H2O index relates to the reference
fluid – water). The maximum relative error of measured fluid
viscosity was 0.5 %.

Measurements of diffusion in protein solutions
Self diffusion of proteins was measured using florescence
correlation spectroscopy (FCS) technique. The experimental
setup was based on a Nikon C1 inverted confocal microscope,
equipped with a water immersion objective, Nikon PlanApo
60x (NA=1.20). The complete system for time-correlated
single photon counting as well as software for raw data
analysis was provided by PicoQuant GmbH (Germany).
A 488 nm pulse diode laser was used for excitation of
fluorescently labelled proteins. The temperature control was
realized by means of an Okolab H201 cage incubator. During
each measurement, at least 15 independent FCS curves were
recorded, with acquisition time for each curve between 30
and 90 s, depending on the fluorescence intensity and other
experimental parameters. The data was combined to perform
a cumulative analysis and fitting (using simple models, which
assumed Gaussian shape of the detection volume).

ζ-potential measurements
We performedζ-potential measurements using a Zetasizer
Nano ZS apparatus (Malvern Instruments Ltd.). The mea-
surements were carried out in disposable folded capillary zeta
cells, using approximately 1 ml of solution per measurement.
In order to obtain desired temperature each sample was incu-
bated for 2 minutes. The data was analysed using the Smolu-

chowski approximation. All the mentioned measurements, ir-
respectively on the method, were performed at 25 °C.
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Fig. S1Scaling plot of the relative viscosity and the reciprocal of
the relative diffusion coefficient. Figurea) shows literature1–3 data
for macroscospic viscosity of hard-sphere solutions and the
self-diffusion data for PMMA particles (rp = 247 nm)1 and for
proteins: bovine serum albumin (BSA,rp = 4 nm)4, and myoglobin
(MGB, rp = 2.4 nm)4. Discrepancies between data for
self-diffusion and for viscous flow are due to the caging/depletion
effect. Introducingd = 1 + (2.02 ± 0.08) ψ/ψrcp intoReff (cf.
Equation 3 from the Main Text) results in the same scaling of both
self-diffusion as well as viscosity data, as depicted in Figureb). In
both plots solid red line represents a linear curve with slope equal to
1.

Functional forms describing the viscosity/diffusion in a
dense colloidal solutions
Viscosity of dense hard-sphere solutions and the process of
diffusion occurring in those solutions are, in the literature, de-
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Fig. S2The logarithm of the relative viscosity or of the reciprocal
of the relative diffusion coefficient. Figurea) shows literature data
for macroscopic viscosity of colloidal solutions consisting of
PMMA hard-sphere like particles ofrp = 301 nm1, polydisperse
SiO2 hard-sphere like particles ofrp = 28 nm1. Plot shows also the
data for self-diffusion of PMMA particles (rp = 247 nm)1 and for
proteins: bovine serum albumin (BSA,rp = 4 nm)4. Curves
represent least square fitting of scaling equation (equations 1) withξ
andReff given by equations 3 and 4 respectively. Bottom plot
represents residue plot being the difference of the data andthe fit.
Figureb) shows the same set of data as in panela). Curves represent
least square fit of the scaling equation (Equation 1) to the data with
Reff given by equation 4 but withψ andψrcp replaced withφ and
φrcp, respectively. For this plot we obtained a new set of parameters
aφ = 4.2 ± 0.5 anddφ = 2.17 ± 0.01 andbφ = 1.9 ± 0.1 for
monodisperse hard-sphere,bφ = 1.64 ± 0.01 for polydisperse
hard-sphere, andbφ = 14.3 ± 0.4 for BSA. Above parameters we
calculate in the same manner as described in the main text.
Comparison of residues clearly shows that model includingψ
dependence describes the data reasonably good when compared
with only φ dependence.

scribed by different functional forms. For example, the viscos-
ity of hard-sphere suspensions is usually described (following
Hunter and Weeks7) by the Doolittle equation

ηr = C1 exp

[

C2φ

φrcp − φ

]

(S1)

with C1 andC2 being free parameters. The short-time diffu-
sion coefficient is on the other hand given by equation (S2),
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Fig. S3Panela) shows reciprocal of the macroscopic viscosity of
the hard-sphere solution related to the viscosity of the solvent (left
y-axis) and relative self-diffusion coefficient of the particle in
hard-sphere solution (right y-axis); both as a function of the volume
fractionφ of suspended particles. Below a certain volume fraction,
φ = 0.527 for viscosity andφ = 0.548 for diffusion, both viscosity
and diffusion are described by Eqs. (1-4) while above thoseφ
viscosity and diffusion are described by Eq. (7). Panelb) shows
comparison between the short- and long-time self-diffusion
coefficient in concentrated suspensions of hard-spheres. We
calculate the long-time self-diffusion coefficient using our scaling
formulae. Following the works of Auer and Frenkel5 we calculate
the short-time self-diffusion coefficient using relation (S2). Green,
dashed-dot line correspond to the long-time diffusion coefficient
calculated with equation (S3). Square points correspond tothe
experimental values of the long-time self-diffusion coefficients of
PMMA particles1 while crosses correspond to the data of
Woodcock6 who performed molecular dynamics simulations.

whereas the long-time self-diffusion by equation (S3).

DS

D0
=

(

1 −

φ

0.64

)δ

(S2)

DL

D0
=

(

1 −

φ

0.58

)δ

(S3)

Hereδ is a free parameter equal to 1.17 for the short-time self-
diffusion coefficient and varying from 1.74 (cf. reference 8) to
2.6 for the long-time self-diffusion coefficient (see references
9, 10, and 11).

In principle when the fluctuation-dissipation theorem
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(FDT) is fulfilled in a given system the ratio of the relative
viscosityη/η0 should be equal to the reciprocal of the relative
long-time diffusion coefficientD0/DL. At first look equa-
tions (S1) and (S3) do not allow for exhibit equality due to
a differentφ-dependence. Equations (1-4) from the main text,
however provides a unified description of the viscosity and the
long-time diffusion validating the FDT.

Equation (S3) withδ ≈ 2.6 was used to describe the long-
time diffusion for calculations of the nucleation rates in both
simulation and experimental studies. Filion and co-workers11

used it to expressed the nucleation rate in terms of the long-
time diffusion coefficient. Harland and van Megen used equa-
tion (S3) to fit their experimental data using the classical nu-
cleation theory. Their expression forI∗ required scaling by
the free parameter equal to 0.01. Indeed the expression (S3)
gives values about two orders of magnitude lower than the val-
ues for experimental or simulated data on long-time diffusion
as presented in figure S3.

Comparison of the method with the classical nucleation
theoryWe compare our results with the nucleation rates calcu-
lated from combination of our scaling equation with the classi-
cal nucleation theory where equation (S4) is used to calculate
the nucleation barrier.

P = exp

[

−

4π3γ3

27φ2
s∆µ2

]

(S4)

whereγ is a surface tension at the liquid-solid interface.φs

and∆µ are the volume fraction of solids and the chemical po-
tential difference between the solid phase and the metastable
phase and both are expressed by the quadratic approximations
(following Sinnet al.10):

φs = 0.5455 + 1.308 (φ − φF) − 2.93 (φ − φF)
2 (S5)

∆µ = −10.354 (φ − φF) − 56.23 (φ − φF)
2 (S6)

whereφF is a volume fraction at the freezing point and is equal
to 0.494. Figure S4 shows comparison of the simulated, pre-
dicted and experimental data with our calculations using CNT
(eq. (S4)).
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Fig. S4Comparison of the experimental, calculated, and simulated
nucleation rates with the values calculated from the classical
nucleation theory according to equation (S4). We calculated the
nucleation rates for different values of the surface tension γ
(following Auer and Frenkel5). Irrespectively on the value ofγ we
obtained overestimated values ofI∗ with respect to the experimental
and simulated values ofI∗. Curves representing CNT calculations
were plotted in the range of volume fractions for which our model
described the data for diffusion (cf. figure S3b). Symbols the same
as in figure 4 from the main text.
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