Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Hierarchical Growth of SnO₂ Nanostructured Films on FTO Substrates: Structural Defects Induced by Sn(II) Self-doping and Their Effects on Optical and Photoelectrochemical Properties

Hongkang Wang,^{‡,†} Sergii Kalytchuk,^{†,1} Haihua Yang,^{†,1} Lifang He,^δ Chenyan Hu,¹ Wey Yang Teoh¹ and Andrey L. Rogach^{†,*}

[‡]Center of Nanomaterials for Renewable Energy (CNRE), State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China

[†]Department of Physics and Materials Science & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong S.A.R. Fax: (+852) 3442-0538; E-mail: andrey.rogach@cityu.edu.hk

¹Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong S.A.R.

⁸Department of Applied Chemistry, Anhui Agricultural University, Hefei, China

Figure S1. Top view SEM images of (a) bare FTO glass and the SnO_2 films obtained after different hydrothermal reaction time of (b) 2h and (c, d) 3h.

Figure S2. SEM images of SnO_2 nanosheet arrays on steel plate with top covered by hierarchical SnO_2 nanoflowers. The steel was planted with a thin seed layer.

Figure S3. SEM image of SnO_2 bilayer film after ultrasound treatment. The hierarchical SnO_2 nanoflowers are mostly removed, indicating they formed in the precursor solution and were deposited on the top of SnO_2 nanosheet array films by natural precipitation.

Figure S4. Valence band XPS spectra of the as prepared SnO_2 nanosheet array on FTO substrate (a) and after calcination at 600 °C in air for 2h (b). (c) The reference sample prepared by using $SnCl_4$ as tin source instead of $SnCl_2$ with all other parameters constant. The dashed line indicates the Fermi level.