Electronic Supplementary Materials (ESI) for:

Effect of chemical structure of polyfluorene on selective extraction of semiconducting single-walled carbon nanotubes

Takahiro Fukumaru,^a Fumiyuki Toshimitsu,^a Tsuyohiko Fujigaya,^{a,b} Naotoshi Nakashima*^{a,b,c}

^{*a*} Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.

^b International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University

^c JST-CREST, 5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan.

Table of Contents of Supporting Information

Synthesis of 9-octyl-9*H*-fluorene (1)

Synthesis of 2,7-dibromo-9-octyl-9*H*-fluorene (2)

Fig. S1 ¹H NMR IR spectrum of poly (9-octyl-9*H*-fuluorene-2,7-diyl) (**C8H-PF**)

Fig. S2 IR spectrum of poly (9-octyl-9*H*-fuluorene-2,7-diyl) (C8H-PF)

Fig. S3 UV-vis absorption and fluorescence spectra of C8H-PF (red) and 2C8-PF (blue) in toluene

Fig. S4 AFM image and height histogram of 2C8-PF-SWNTs

Fig. S5 Raman spectra excited at 633 nm of C8H-PF-SWNTs

Fig. S6 Raman spectra excited at 532 nm of C8H-PF-SWNTs

Fig. S7 Raman spectra excited at 785 nm of C8H-PF-SWNTs

Fig. S8 Molecular mechanics simulations of the pair of polymer and SWNTs

 Table S1. Calibrated content of the SWNT species deduced from the PL mappings of

 C8H-PF-SWNTs and 2C8-PF-SWNTs

Table S2. Assignments of the absorption peaks of C8H-PF-SWNTs and 2C8-PF-SWNTs to chiral index of (n,m)SWNTs

Synthesis of 9-octyl-9*H*-fluorene (1)

A mixture of 9*H*-fluorene (1.66 g, 10 mmol), potassium hydroxide (KOH) (0.2 g, 5.0 mmol) and octane-1-ol (6.77 g, 52 mmol) was stirred at 190 °C for 12 h. KOH (0.28 g) was added to the mixture, then stirred at 190 °C for 12 h, to which KOH (0.14 g) was added, then the mixture was stirred at 190 °C for 6 h. After cooling to room temperature, excess octane-1-ol was removed from the mixture by distillation to provide a crude product, which was purified by column chromatography using hexane as an eluent to give 9-octyl-9*H*-fluorene (**1**) as a colorless liquid (2.4 g, 86%).

Anal. Calcd. C, 90.37; H, 9.34 for C21H26; Found: C, 90.59; H, 9.41%. ¹H NMR δ_H (300 MHz, CDCl₃, Me₄Si): 0.86 (3H, t, CH₃, *J*=6), 1.19-1.25 (12H, m, CH₂+CH₃), 1.98 (2H, m, CH₂), 3.96 (1H, t, *J*=6), 7.39 (4H, m, Ar-H), 7.51 (2H, d, Ar-H, *J*=6), and 7.75 (2H, d, Ar-H, *J*=6).

Synthesis of 2,7-dibromo-9-octyl-9*H*-fluorene (2)

Bromine (114 μ L, 2.1 mmol) was added dropwise over 10 min to a stirred solution of 9-octyl-9*H*-fluorene 1 (332 mg, 1.19 mmol) and iodine (25 mg) in dichloromethane (8.0 mL) at 0 °C in the dark. The mixture was stirred for 1 h at 0°C in the dark and then for 3.0 h at room temperature in the dark followed by quenching with an aqueous sodium thiosulfate (20%, 10 mL), from which the aqueous phase was separated, then extraction was carried out with dichloromethane (4 times, each 50mL), then dried over magnesium sulfate and evaporated under reduced pressure to provide a crude product, which was recrystallized from methanol to give 2,7-dibromo-9-octyl-9*H*-fluoerene 2 as a white solid (450 mg, 87%).

Anal. Calcd. C, 57.61; H, 5.52. for C₂₁H₂₄Br₂. Found; C, 57.82; H, 5.55%. ¹H NMR δ_H (300 MHz, CDCl₃, Me₄Si) 0.86 (3H, t, CH₃, *J*=6), 1.11-1.21 (12H, m, CH₂+CH₃), 1.93-2.00 (2H, m, CH₂), 3.96 (1H, t, *J*=6), 7.49 (2H, m, Ar-H), 7.57 (2H, d, Ar-H, *J*=8), and 7.62 (2H, s, Ar-H).

Fig. S1¹ H NMR spectrum of poly (9-octyl-9*H*-fuluorene-2,7-diyl) (**C8H-PF**).

Fig. S2 FT-IR spectrum of poly (9-octyl-9*H*-fuluorene-2,7-diyl) (C8H-PF).

Fig. S3 UV-vis absorption (solid line) and fluorescence spectra (dotted line) of **C8H-PF** (red) and **2C8-PF** (blue) in toluene for comparison. Excitation wavelengths for the fluorescence spectra were 365 nm and 385 nm for **C8H-PF** and **2C8-PF**, respectively.

Fig. S4 AFM image (A) and its height histogram (B) of the 2C8-PF-SWNTs.

Fig. S5 Raman spectra excited at 633 nm of the filter cakes of the **C8H-PF-**SWNTs (red) together with SC-SWNTs (black) and 2**C8-PF-**SWNTs (blue) for comparison. Range is 100~3000 cm⁻¹.

Fig. S6 Raman spectra excited at 532 nm of the filter cakes of the **C8H-PF-**SWNTs (red) together with SC-SWNTs (black) and the **2C8-PF-**SWNTs (blue) for comparison.

Fig. S7 Raman spectra excited at 785 nm of the filter cakes of the **C8H-PF**-SWNTs (red) together with the SC-SWNTs (black) and the **2C8-PF**-SWNTs (blue) for comparison.

(A) C8H-PF-(*n*,*m*)SWNT

(B) 2C8-PF-(*n*,*m*)SWNT

Fig. S8 Ratios of the calibrated contents of the C8H-PF-(n,m)SWNTs (A) and 2C8-PF-(n,m)SWNTs (B) and calibrated contents of the SC-(n,m)SWNTs and binding energies of the C8-PF-(n,m)SWNTs (A) and 2C8-PF-(n,m)SWNTs (B) as a function of diameter of the SWNTs. Upper images were the most stable composite structures of C8H-PF-(8,7)SWNT (A) and 2C8-PF-(8,7)SWNT (B).

SWNT			PL intensity			Calibrated PL intensity			Calibrated content			Ratio ^b	
				(a.u.)			(a.u.) ^a			/ %			
Chiral index	Diameter	Chiral											000 DE
(<i>n</i> , <i>m</i>)	/ nm	angle /°	C8H-PF	2C8-PF	SC	C8H-PF	208-PF	SC	C8H-PF	208-PF	SC	C8H-PF	208-PF
(6,5)	0.757	27.02	2025	505	561	3022	754	837	2.3	0.5	4.3	0.53	0.12
(8,3)	0.782	15.40	759	324	463	356	152	217	0.3	0.1	1.1	0.27	0.09
(7,5)	0.829	24.54	2769	10098	902	3900	14223	1271	3.0	8.7	6.6	0.45	1.32
(8,4)	0.840	19.19	1589	5507	552	3454	11972	1200	2.6	7.3	6.2	0.42	1.18
(10,2)	0.884	9.09	1380	301	690	580	126	290	0.4	0.1	1.5	0.27	0.07
(7,6)	0.895	27.47	4218	12211	1179	8974	25981	2508	6.9	15.9	12.9	0.53	1.23
(11,1)	0.910	4.41	1797	3452	242	6912	13277	932	5.3	8.1	4.8	1.10	1.69
(9,4)	0.916	17.53	3118	2405	1089	4455	3436	1555	3.4	2.1	8.0	0.43	0.26
(10,3)	0.936	12.79	2231	3594	343	7967	12836	1224	6.1	7.9	6.3	0.97	1.25
(8,6)	0.966	25.31	8204	13198	1042	16744	26935	2126	12.8	16.5	11.0	1.16	1.50
(9,5)	0.976	20.66	5243	2019	518	18726	7211	1852	14.4	4.4	9.6	1.50	0.46
(11,3)	1.014	11.79	2607	2654	577	4418	4498	978	3.4	2.8	5.0	0.68	0.56
(8,7)	1.032	27.80	7758	8055	452	25861	26850	1505	19.8	16.5	7.8	2.54	2.12
(10,5)	1.050	19.16	3176	1015	595	6758	2160	1266	5.2	1.3	6.5	0.80	0.20
(9,7)	1.103	25.88	4943	3442	438	18307	12748	1622	14.0	7.8	8.4	1.67	0.93

Table S1 Calibrated content of the SWNT species deduced from the PL mappings of the**C8H-PF-SWNTs**, **2C8-PF-SWNTs** and SC-SWNTs

^{*a*} calibration factors were used according to the paper Y. Oyama et al., *Carbon*, **2006**, *44*, 873.

^b ratio of calibrated content of polymer-SWNTs and calibrated content of SC-SWNTs

Chiral index of	Wavelength / nm						
(<i>n</i> , <i>m</i>)SWNT	C8H-PF-SWNTs	2C8-PF-SWNTs					
(9,7)	1353	1345					
(8,7)	1283	1282					
(8,6)	1199	1194					
(7,6), (8,4)	1139	1135					
(10,2)	1075	-					
(7,5)	1046	1044					
(6,5)	994	-					
(8,3)	-	981					
(13,2)	877	876					
(9,7)	805	799					
(8,6), (8,7)	733	727					
(9,5), (8,3)	684	-					
(7,5), (7,6)	657	653					

Table S2 Assignments of the absorption peaks of the C8H-PF-SWNTs and 2C8-PF-SWNTs to eachchiral index of (n,m)SWNTs