W₁₈O₄₉ Nanowire Alignments with BiOCl Shell as Efficient Photocatalyst

Zhen-Feng Huang[†], Jiajia Song[†], Lun Pan[†], Xu Jia[†], Zhe Li[†], Ji-Jun Zou^{*}[†],

Xiangwen Zhang†‡, and Li Wang†‡

†Key Laboratory for Green Chemical Technology of the Ministry of Education,

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,

China

*‡*Collaborative Innovative Center of Chemical Science and Engineering (Tianjin),

Tianjin 300072, China.

E-mail: jj_zou@tju.edu.cn (J.-J. Zou)

Table of contents

	Captions
Table S1	Synthetic parameters of all the samples. (a, b and c: ratios defined in the starting materials, determined by ICP, and determined by XPS, respectively.)
Figure S1	XRD patterns of W@BiOCl synthesized with BiCl ₃ content increasing from W@BiOCl-1 to W@BiOCl-4.
Figure S2	UV-vis diffuse reflectance spectra of W@BiOCl with synthesized with $BiCl_3$ content increasing from W@BiOCl-1 to W@BiOCl-4, pure $W_{18}O_{49}$ and BiOCl.
Figure S3	XRD pattern of WA-3.
Figure S4	BJH pore distribution of WA-3 and WA@BiOCl-3.
Figure S5	XPS spectra of (a) W 4f, (b) Bi 4f, (c) O 1s, and (d) Cl 2p from WA@BiOCl- 3.
Figure S6	UV-vis diffuse reflectance spectra of WA@BiOCl synthesized with Bi(NO ₃) ₃ content increasing from WA@BiOCl-1 to WA@BiOCl-4.
Figure S7	Changes of MO concentration with irradiated time with the presence of WA@BiOCl-3 under simulated sunlight.
Figure S8	Photoactivity of $W_{18}O_{49}/BiOCl$ physical mixtures by mixing the individual semiconductors with composition identical to WA@BiOCl counterparts under simulated sunlight.
Figure S9	XRD patterns of WA@BiOCl-3 before and after the 5-cycling of MO degradation under simulated sunlight.

Abbreviations	WCl ₆	BiCl ₃	morphology	BET	[Bi:W] ^a
	[g]	[g]		[m ² /g]	
BiOCl		0.236	sheet	15.1	
W@BiOCl-1	0.297	0.016	NW	51.2	1:15
W@BiOCl-2	0.297	0.03	NW	50.3	1:8
W@BiOCI-3	0.297	0.047	NW	49.1	1:5
W@BiOCl-4	0.297	0.079	NW	41.7	1:3

Abbreviations	WCl ₆	NaNO ₃	morphology	BET
	[g]	[g]		[m ² /g]
WA-1	0.297	0.01	alignments	56.7
WA-2	0.297	0.015	alignments	62.1
WA-3	0.297	0.02	alignments	59.4
WA-4	0.297	0.03	alignments	54.2

Abbroviations	WCl ₆	Bi(NO ₃) ₃ ·5H ₂ O	morphology	BET	[Bi:W]
ADDreviations	[g]	[g]		[m ² /g]	
W ₁₈ O ₄₉	0.297		NW	60	
WA@BOCL1	0.297	0.024	alignments	74.5	(1:15) ^[a]
WA@BIOCI-I					(6.5%) ^[b] ; (8.2%) ^[c]
	0.297	0.045	alignments	51.8	(1:8) ^[a]
WA@DIOCI-2					$(11.1\%)^{[b]}; (15.1\%)^{[c]}$
WA@BOCL3	0.297	0.073	alignments	52.9	(1:5) ^[a]
WA@DIOCI-5					$(19.1\%)^{[b]}; (31.6\%)^{[c]}$
	0.297	0.121	alignments	37.3	(1:3) ^[a]
WA@BIOCI-4					$(33.7\%)^{[b]}; (50.1\%)^{[c]}$

Table S1. Synthetic parameters of all the samples. ([a], [b] and [c]: ratios defined in the starting materials, determined by ICP, and determined by XPS, respectively.)

Figure S1. XRD patterns of W@BiOCl synthesized with BiCl₃ content increasing from W@BiOCl-1 to W@BiOCl-4.

Figure S2. (a) UV-vis diffuse reflectance spectra of W@BiOCl with synthesized with $BiCl_3$ content increasing from W@BiOCl-1 to W@BiOCl-4, pure $W_{18}O_{49}$ and BiOCl, and (b) Photo image of W@BiOCl-3.

Figure S3. XRD pattern of WA-3.

Figure S4. BJH pore distribution of WA-3 and WA@BiOCl-3.

Figure S5. XPS spectra of (a) W 4f, (b) Bi 4f, (c) O 1s, and (d) Cl 2p from WA@BiOCl-3.

Figure S6. UV-vis diffuse reflectance spectra of WA@BiOCl synthesized with Bi(NO₃)₃ content increasing from WA@BiOCl-1 to WA@BiOCl-4.

Figure S7. Changes of MO concentration with irradiated time with the presence of

WA@BiOCl-3 under simulated sunlight.

Figure S8. Photoactivity of $W_{18}O_{49}/BiOCl$ physical mixtures (BWM) by mixing the individual semiconductors with composition identical to WA@BiOCl counterparts under simulated sunlight.

Figure S9. XRD patterns of WA@BiOCl-3 before and after the 5-cycling of MO degradation under simulated sunlight.