Solution-Processed Copper-Nickel Nanowire Anodes for Organic Solar Cells

Ian E. Stewart,^{a, †} Aaron R. Rathmell,^{a, †} Liang Yan,^b Shengrong Ye,^a Patrick F. Flowers,^a Wei You^{b,c} and Benjamin J. Wilev^{a,*}

^aDepartment of Chemistry, Duke University, 124 Science Drive, Box 90354 Durham, North Carolina 27708, United States. E-mail: benjamin.wiley@duke.edu

^bDepartment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North

Carolina 27599, United States. E-mail: wyou@email.unc.edu

^cCurriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill,

Chapel Hill, North Carolina 27599, United States

[†]These authors contributed equally to this work.

Table S-1. Palladium Cost Calculation.

g Cu/ g Pd ^a	g m ⁻² Cu ^b	g m ⁻² Pd	Bulk \$ Pd g ⁻¹	\$ Pd m ⁻²
10.2	0.0493	0.00482	26.6	0.13

^{*a*} Determined by AAS.

^b Mass of Cu per coated slide was determined by Equation S-1

$$m_{\rm Cu} = V_{\rm NW} \times \rho_{\rm Cu} \times \# NW$$
S-1

where m_{Cu} is the mass of copper nanowires, V_{NW} is the average volume of a nanowire determined by the average diameter and length of the nanowire and assuming a cylindrical shape, ρ_{Cu} is the bulk density of copper, and #NW is the number of nanowires m⁻² as determined by Equation S-2

$$\#NW = \frac{AF}{D_{\rm NW} \times L_{\rm NW}}$$
 S-2

where AF is the area covered by the nanowires per m², D_{NW} is the average diameter of the nanowires, and L_{NW} is the average length of the nanowires. Here, the fractional area coverage corresponding to a %*T* of 91.5 with nanowire aspect ratio L/D = 300 is roughly 0.09 m⁻².³⁰

Figure S-1. (A) Plot of transmittance vs. sheet resistance of CuNW films treated with glacial acetic acid and pressed at various pressures. (B) SEM image of a Cu NW film pressed at 160 bar.

Figure S-2. The mole percent of Ni plated onto the Cu NWs versus time in the plating solution.

Anode	$R_s (\Omega \text{ sq}^{-1})$	<i>%T</i> of Film and Substrate	%T of Device	% Light Absorbed by Device
ITO	20	88	10.6	77.4
Ag NW	14	67	4.3	62.7
CuNi NW	36	71	6.7	64.3

Table S-2. Film and Device Characteristics ($\lambda = 550$ nm).