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Experimental
The BiFeO3 – CoFe2O4 epitaxial nanocomposite was deposited 
on a LaNiO3-buffered LaAlO3 (001) substrate by pulsed laser 
deposition. Detailed information about preparation conditions and 
properties is reported elsewhere1.

EELS and HAADF were obtained in a JEOL JEM2010F 
coupled to a Gatan GIF spectrometer, operated at 200 kV, with a 
high resolution ultra narrow pole piece. The sample was prepared 
in a nanoneedle shape by Focused Ion Beam (FIB) in a FEI Strata 
235 Dual Beam System. The structure of the material can be 
observed in Figure S1. The nanoneedle was attached to the usual 
Omniprobe grid, only shortened at both ends to keep the 
maximum dimension below 1.5 mm in order to fit to a special 
sample holder (Fishione 2030 ultra-narrow gap tomography 
holder).

The tilt series of the first experiment (refer to Figure 2(a-c) and 
the corresponding passage of the main text) ranged from -65.7º to 
61.8º, at tilt steps of 3º. For each tilt step a spectrum image (SI) 
and a HAADF image were acquired, ending up with 44 SI 
consisting in 14x27 single spectra each and 2.8 nm per pixel. 
Every 14 spectra (one row of the SI), sample drift was corrected 
using cross correlation in a HAADF survey image and exposure 
time was 1 second per spectrum. 

The second experiment (refer to Figure 2(d-f) and the 
corresponding passage of the main text) ranged from -64º.4 to 
70º, at tilt steps of 2º. The resulting data consisted in 67 SI and 
HAADF images of 33x39 pixels with a resolution of 2.5 nm per 
pixel. In this second experience, measure times were reduced to 
0.8 seconds and sample drift was also corrected once per row. 
Tilt angles were externally measured using an external clinometer 
for higher precision. Spectra were acquired with a collection 
angle of 20 mrad from 424 to 936 eV, with 0.5 eV per channel for 
both experiments. Lower acquisition times were preferred in this 
second experiment, as the amount of spectra to acquire was 
extremely high and sample damage should be prevented. 
However, a further decrease in the acquisition times was found to 
be detrimental because the signal could not be properly separated 
from the noise in the subsequent multivariate statistical analysis. 
In this range, O K edge (532 eV), Fe L2,3 edge (708 eV) and La 
M4,5 edge (832 eV) were clearly visible. Other expected edges on 
this range, such as Co L2,3 (779 eV) and Ni L2,3 (855 eV) were 
hardly visible. It can be explained by the lower concentration of 
these transition metals, the proximity to 

Figure S1: Sample preparation. a) HAADF STEM image of the 
multiferroic nanocomposite, where the CFO columns can be observed, b) 
CFO nanocolumn in BFO and c) SEM image of the needle shaped sample 

prepared in the FIB

the tail of previous edges (as the sample is about 80 nm thick and 
thus the signal to background is reduced), low acquisition times, 
which lower the signal to noise ratio and low brightness (intensity 
current) of the used TEM.

Data analysis
The spectra present a low signal noise ratio, which is due to the 
low acquisition times, so in a first step the noise level was 
reduced by taking advantage of Multivariate Analysis (MVA). 
Using Hyperspy2, 3, a Python based EELS analysis toolbox, the 
energy drift of the data was corrected using the region around O 
K edge. Afterwards, weighted principal component analysis 
(PCA) was applied, assuming a dominant Poissonian noise in the 
weighting. 

PCA is a spectral analysis technique consisting on finding a 
new parametric model for the dataset, where every spectrum can 
be described as a weighted sum of a finite number of components 
and noise. Three assumptions are made: (i) that the problem is 
linear, (ii) that signal has higher variance than the noise and (iii) 
component orthogonality. The signals are separated according to 
their variance4, therefore, by keeping only higher variance 
components and discarding the noise an enhanced signal-to-noise 
ratio can be obtained. An example is shown in Figure S2 for the 
first experiment dataset, where the difference in the same 
spectrum before and after PCA noise reduction is shown for one 
single spectrum at -38.2º tilt. In the first experiment, 6 
components were retained, while in the second experiment 4 of 
them were kept for further analysis. In both cases, the choice is 
made observing the components and keeping only those with 
relevant signal. In Figure S4, The scree plots and the first rejected 
component are shown for the first experiment (a) and the second 
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Figure S2: a) spectrum image at -38.2 º tilt with b) extracted spectrum 
from the area marked with the red square. c) Spectrum image after PCA 
noise reduction and d) extracted spectrum from the region marked with 
the green square. There is a clear increase in signal to noise ratio in the 

data after PCA.

(b). The signals in the rejected components can be linked to 
energy instabilities in the acquisition, and do not offer further 
information to the spatial distribution of the elements.

In addition to the core-loss maps, high angle annular dark field  
(HAADF) signal was coacquired for each spectrum. HAADF 
signal was used to measure spatial drift between images and to 
correct for tilt axis. Moreover, HAADF is the most used signal in 
electron tomography, so the reconstruction can be used for 
comparison reasons. Survey images, also based on HAADF are 
also reconstructed, as they have, nonetheless, better spatial 
resolution and offer the view of a larger area of the nanoneedle.
We have used Hyperspy data analysis software to perform 
despiking and alignment processing the hyperspectral datacube 
resulting from the stacking of the spectrum images (SI) from each 
projection2, 3. The same software was used for the assessment of 
the multivariate analysis procedure: weighted principal 
components analysis (PCA) through the singular value 
decomposition (SVD) algorithm. Finally, PCA followed by blind 
source separation (BSS) was performed using the Bayesian 
Linear Unmixing software by N. Dobigeon5. PCA is applied fist 
to reduce the number of components, as the BSS procedures are 
much more computer intensive. In this last data processing, the 
constraints are the number of components, their non-negative 
nature and that maps should be limited to proportions. As 
explained in 6, we established the number of separated 
components to 4, chosen the N-FINDR geometrical algorithm for 
generating the prior estimations and let a maximum number of 
unmixing iterations of 50.

Edge intensities extraction method consisted in removing the 
background previous to each edge approximating it by an inverse 
power law and then integrating the area under the edges for 40 eV 
(see Figure S3). The extracted maps were oversampled using a 
bipolar interpolation, so the alignment and reconstruction 
software could perform cross-correlations with better accuracy. 
IMOD7 and Inspect3D were the chosen software for image and 

Figure S3: Extraction of edge intensities in the first experiment a) single 
spectrum from SI after PCA treatment at -38.2º. The shaded areas 

represent the integrated area of the edges after background subtraction for 
oxygen (in red), iron (in green) and lanthanum (in blue). Maps of 

extracted edge intensities for b) O K, c)Fe L2,3 and d) La M4,5 are shown 
combined in e).

tilt axis alignment and reconstruction. IMOD was used in the first 
experiment (which contains less details) for spatial drift, as it was 
found more suitable for images obtained from EELS with few 
details, while the second experiment was corrected directly in 
Inspect3D. Spatial drift was measured in HAADF coacquired 
signal and then applied to the core-loss signals to correct SI 
spatial position. SIRT algorithm8 with 30 iterations was used for 
the reconstruction in the first experiment dataset and 20 iterations 
were used in the second one. Avizo imaging software was used 
for the final segmentation and visualization of the data.
In order to obtain a 3D reconstruction of a signal coming from an 
object by means of tomographic methods, this signal must behave 
monotonically with a property of the object9, which is the so-
called projection requirement. For extracted intensities, the use in 
tomography can be justified as follows:

The signal for each element is given by the equation:

    (1)𝐼𝐴𝑘(𝛽,Δ)= 𝑁
𝐴𝜎𝐴𝑘(𝛽,Δ)𝐼𝑡(𝛽)𝑒

‒ 𝑡𝜆

where  is the edge intensity of a k transition for an element A, 𝐼𝐴𝑘
integrated over an angle  and in the energy range Δ,  is the 𝛽 𝑁𝐴

areal density of element A (concentration times thickness),  is 𝜎𝐴𝑘
the k ionization partial cross-section of element A,  the total 𝐼𝑡
transmitted beam intensity, t is the thickness and  is the inelastic 𝜆
mean free path. 

This expression relies on the assumption that there is only one 
scattering event of core-loss nature. Single scattering distribution 
of the signal is predominant where thickness is lower than the 
inelastic mean free path, which in our case is over 100 nm10. 
Adding the influence of the plasmon losses does not change the 
relationship in equation 1. Plasmon losses cause the intensities of 
the edges to be shifted to higher energies. As long as a single 
plasmon excitation dominates valence scattering and that the 
integration window is big enough, the extracted signal continues 
to behave monotonically. In our case, we will assume that in our 



Figure S4: a) Scree plot from the PCA of the first experiment. The first 
rejected component is shown in the inset. b) Scree plot for the second 
experiment, also showing the first rejected component. The rejected 

components contained mostly noise and some instabilities in energy, so 
their contribution was not considered relevant.

range of thickness this term does not affect the monotonicity of 
the signal.

Some other effects can make the signal fail to fulfill the 
projection requirement, such as diffraction contrast, which lowers 
the overall intensity of the spectra. In our dataset, the measured 
total intensity of the SI did not change substantially over the 
tilting process, thus the influence of diffraction contrast is of no 
importance. In summary we can consider that the extracted signal 
changes monotonically with the thickness and the density of each 
element in our sample as shown in Figure 3 of the main text.
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