Supporting Information

Type-Tunable Amplified Spontaneous Emission from Core-Seeded CdSe/CdS Nanorods Controlled by Exciton-Exciton Interaction

Yusuf Kelestemur,^{‡,a} Ahmet Fatih Cihan,^{§,‡,a} Burak Guzelturk^a and Hilmi Volkan Demir*,^{a,b}

 ^aDepartment of Physics, Department of Electrical and Electronics Engineering, UNAM – Institute of Materials Science and Nanotechnology, Bilkent University, TR-06800, Ankara, Turkey
^bLuminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore E-mail: volkan@stanfordalumni.org

Figure S1. (a) Absorption and (b) photoluminescence spectra of CdSe/CdS core/shell NRs with varied core sizes and rod lengths.

Figure S2. High-angle annular dark-field transmission electron microscopy (HAADF-TEM) images of the (a) NR_4 , (c) NR_5 and (e) NR_6 with a scale bar of 100 nm and (b) NR_4 , (d) NR_5 and (f) NR_6 with a scale bar of 50 nm.

Figure S3. (a) Schematic illustration of CdSe/CdS core/shell NRs proportional to their size. (b), (c), (d) Excitation intensity dependent emission spectra of NR_4 (with red-shifted ASE peak), NR_5 (with blue-shifted ASE peak), and NR_6 (with blue-shifted ASE peak), respectively. (e), (f), (g) Excitation pulse intensity dependences of emissions at the ASE peak positions of NR_4 , NR_5 , and NR_6 , respectively.

Figure S4. TRF decay curves of the NRs together with average least chi-square fitting lifetimes.