Supporting Information

Effect of Fullerenol Surface Chemistry on Nanoparticle Bindinginduced Protein Misfolding

Slaven Radic^{1,*}, Praveen Nedumpully-Govindan^{1,2,*}, Ran Chen¹, Emppu Salonen², Jared M. Brown³, Pu Chun Ke¹, and Feng Ding¹
¹Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
²Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
³Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA

*These authors contributed equally

Address correspondence to: fding@clemson.edu

Figure S1. The binding sites of $C_{60}(OH)_{20}$ fullerenol on ubiquitin as predicted by docking simulations. The residues that make direct contact with ubiquitin include Phe45, Asn60, Gln 62 and Ser65 at site 1 (A), and Leu71, Leu73, Gly75 and Gly76 at site 2 (B), which are highlighted by depicting in stick representation. The C₆₀ fullerene bind predominantly to site 1.

Figure S2. Stern-Volmer plot of fluorescence quenching of ubiquitin in the presence of fullerenol $C_{60}(OH)_{20}$.

Figure S3. Isothermal titration calorimetry of $C_{60}(OH)_{20}$ fullerenol into ubiquitin.

Figure S4. Representative RMSD plots of ubiquitin without any nanoparticles from DMD simulations. The three trajectories (A-C) are taken from three independent simulations.

Figure S5. Protein heavy atom RMSD fluctuations in MD simulations in the cases of ubiquitin-alone (black), ubiquitin with C_{60} fullerene (red) and ubiquitin with $C_{60}(OH)_{20}$ fullerenol (green).

Figure S6. Circular dichroism spectra of ubiquitin and ubiquitin-fullerenol solutions.