Supporting Information

Triangular-Shaped Molecular Random Tiling and Molecular Rotation in a Two-Dimensional Glassy Networks

Yongtao Shen ^{a†}, Ke Deng ^{b†}, Songlin Yang ^a, Bo Qin ^a, Shiyu Cheng ^a, Ningbo Zhu ^d,

Jiejin Ding ^c, Dahui Zhao ^{d*}, Ji Liu ^{c*}, Qingdao Zeng ^{b*} and Chen Wang^{b*}

^a School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
^b CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China, wangch@nanoctr.cn, zengqd@nanoctr.cn.
^c Beijing Municipal Institute of Labour Protection, No. 55 Taoranting Street, Beijing, China.liuji82@gmail.com

^d Department of Applied Chemistry and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China. E-mail: dhzhao@pku.edu.cn

TABLE OF CONTENTS

1.	Experiment Section	S2
2.	Theoretical Simulation Methods	S3

The solvents used in the experiments, 1,2,4-Trichlorobenzene (TCB) were purchased from Acros Co. and used without further purification. Macrocycle-1 was synthesized as previously reported.^[1] The sample adlayer was prepared by depositing a droplet of the solution of Macrocycle on a freshly cleaved HOPG surface. All STM experiments were carried out with a Nanoscope IIIa scanning probe microscope system (Veeco Metrology, USA) at the liquid-solid interface at room temperature (21-22 °C). Tips were mechanically formed from Pt/Ir wires (80%/20%). All STM images were recorded in the constant current mode.

2. Theoretical Simulation Methods

We performed periodic theoretical calculations using density functional theory (DFT) provided by the DMol3 code.^[2] The Perdew and Wang parameterization^[2,3] of the local exchange-correlation energy are applied in the local spin density approximation (LSDA) to describe exchange and correlation. We expand the all-electron spin-unrestricted Kohn-Sham wave functions in a local atomic orbital basis. In such double-numerical basis set polarization is described. All calculations are all-electron ones, and performed with the extra-fine mesh. Self-consistent field procedure is done with a convergence criterion of 10⁻⁵ a.u. on the energy and electron density.

Table S1. The interaction energy between Macrocycle-1,2,3 and HOPG surface.

	Macrocycle-1	Macrocycle-2	Macrocycle-3	
Interaction Energy				
between Macrocycle and	-254.97 kcal/mol	-188.37 kcal/mol	-227.13 kcal/mol	
HOPG surface				

References:

[1] T. Li, K. Yue, Q. Yan, H. Huang, H. Wu, N. Zhu and D. Zhao, Soft Matter, 8, 2405 (2012)

[2] A. D. Becke, J. Chem. Phys. 88, 2547 (1988)

[3] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)