Supplementary Information

A Facile Green Antisolvent Approach to Cu²⁺-doped ZnO

Nanocrystals with Visible-Light-Responsive Photoactivities

Yi-Hsuan Lu,^{1†} Wei-Hao Lin,^{1†} Chao-Yao Yang,¹ Yi-Hsuan Chiu,¹ Ying-Chih Pu,¹ Min-Han Lee,² Yuan-Chieh Tseng,¹ and Yung-Jung Hsu^{1*}

¹ Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan 30010, Republic of China.

² Undergraduate Honors Program of Nano Science & Engineering, National Chiao Tung University, Hsinchu, Taiwan 30010, Republic of China.

*E-mail: <u>yhsu@cc.nctu.edu.tw</u>

Fig. S1 (a) TEM image, (b) SAED pattern and (c) HRTEM image of pure ZnO nanocrystals obtained from antisolvent process.

Fig. S2 XPS spectra of Cu²⁺-doped ZnO nanocrystals before and after 8 runs of photoelectrochemical measurement. The Zn 2p signals were consistent with the presence of ZnO with the binding energy of 1022 and 1045 eV for Zn $2p_{1/2}$ and Zn $2p_{3/2}$, respectively. The deconvolution of O 1s produced two peaks which were assigned to the O-H species (533 eV) and Zn-O bonding (531 eV).^[1] No appreciable change in the binding energy of Zn 2p and O 1s was observed upon 8 runs of measurement. Each run contained an *I-t* scan for an on/off cycle of light illumination (200 sec).

Fig. S3 UV-visible absorption spectra of the pure ZnO and Ni^{2+} -doped ZnO nanocrystals. The inset shows an SEM image of Ni^{2+} -doped ZnO.

Fig. S4 Magnetic hysteresis curves of the pure ZnO and Cu^{2+} -doped ZnO nanocrystals with different Cu^{2+} concentrations measured at 300K. Well-defined hysteresis loops were observed in the Cu²⁺-doped ZnO, indicative of the phenomenon of the room temperature ferromagnetism. Due to promoted coupling of Cu^{2+} with the host lattice,^[2] saturation magnetization is enhanced with increasing Cu^{2+} concentrations.

References

[1] (a) Z. Li, Y. Xiong and Yi Xie, *Inorg. Chem.*, 2003, **42**, 8105. (b) A. Prakash, S. K. Misra and D. Bahadur, *Nanotechnology*, 2013, **24**, 095705.

[2] (a) J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, *Nat. Mater.* 2005, 4, 173. (b) D. Y. Inamdar, A. K. Pathak, I. Dubenko and N. Ali, S. Mahamuni, *J. Phys. Chem. C* 2011, 115, 23671.