Supplementary Information

Large Work Function Difference Driven Electron Transfer from Electrides to Single-walled Carbon Nanotubes

Mini Mol Menamparambath^{a,b}, Jong-Ho Park^{a,c}, Ho-Sung Yoo^{a,c}, Shashikant P. Patole^{d,e,f}, Ji-Beom Yoo^{d,e}, Sung Wng Kim^{a,c,*} and Seunghyun Baik^{a,b,*}

^aCenter for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 440-746, Republic of Korea
^bSchool of Mechanical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
^cDepartment of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
^dSKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
^eSchool of Advanced Materials Science and Engineering (BK21), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
^fPresent address: Department of Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia

Corresponding Authors

E-mail: kimsungwng@skku.edu; sbaik@me.skku.ac.kr

Acronym	Description
HSWNT	HiPco SWNT (Diameter: 0.7-1.2 nm, Length: 400-700 nm) ^{S1}
PSWNT	Purified plasma SWNT (Diameter: 1.2-1.7 nm, Length: 1-2 $\mu m)^{S2}$
C12A7:e ⁻	$[Ca_{24}Al_{28}O_{64}]^{4+}\cdot 4e^{-}$
Ca2N:e ⁻	$[Ca_2N]^+ \cdot e^-$
C12A7:e⁻-HSWNT film	[Ca ₂₄ Al ₂₈ O ₆₄] ^{4+.} 4e ⁻ -HiPco SWNT-PVDF-HFP film
Ca2N:e⁻-HSWNT film	[Ca ₂ N] ⁺ ·e ⁻ -HiPco SWNT-PVDF-HFP film
C12A7:e ⁻ -PSWNT-Ag paste	[Ca ₂₄ Al ₂₈ O ₆₄] ^{4+.} 4e ⁻ -Plasma purified SWNT-Ag-Epoxy paste
Ca2N:e ⁻ -PSWNT-Ag paste	[Ca ₂ N] ⁺ ·e ⁻ -Plasma purified SWNT-Ag-Epoxy paste

Table S1. Acronyms of base materials and synthesized specimens

Figure S1. Field emission characteristics of the PSWNT-Ag paste and HSWNT-Ag paste. The nanotubes were mixed with Ag pastes without electride particles. The nanotube, silver, and epoxy concentrations were 2.5, 80, and 17.5 wt.%. The field emission current density of PSWNT-Ag paste was 0.48 mA/cm² at 7.3 V/ μ m with a turn on voltage of 4.14 V/ μ m. The field emission current density of HSWNT-Ag paste was 0.19 mA/cm² at 7.34 V/ μ m with a turn on voltage of 4.2 V/ μ m.

Figure S2. Wide scan XPS data of pure HSWNTs, pure C12A7:e⁻ powder, and C12A7:e⁻ HSWNT powder mixture (50:50 wt.%).

Figure S3. The G-mode of Raman spectra measured at 6 different locations in pure HSWNTs, C12A7:e⁻-HSWNT, and Ca2N:e⁻-HSWNT powder mixtures.

Estimation of transferred electrons from electrides to nanotubes

The fitting to the calculation of density functional theory correlates the G-mode shift of nanotubes ($\Delta \omega$ (cm⁻¹)) with the number of transferred electrons per carbon atom (f_c).^{S3}

$$\Delta \omega = \Delta \omega_s + \Delta \omega_d \tag{S1}$$

$$\Delta\omega = 350f_c + 101\sqrt{f_c} \tag{S2}$$

$$f_c^* = (f_c \times N_{C\text{-}atoms}) / L_{Tube}$$
(S3)

where $\Delta \omega_s$ is the Raman shift due to the lattice contraction (strain), $\Delta \omega_d$ is the nonadiabatic effects (dynamical) due to electron-phonon coupling, f_c^* is the total number of electrons transferred per unit length of a nanotube (#/cm⁻¹), $N_{C-atoms}$ is the total number of carbon atoms in a nanotube, and L_{Tube} is the length of a nanotube.

The following equations were used to calculate $N_{C-atoms}$ ^{S4}

$$N_{C-atoms} = (M_{Tube} \times N_A) / M_{carbon}$$
(S4)

$$M_{Tube} = (\pi L_{Tube} \times D_{Tube}) / 1315 \text{ m}^2 \text{g}^{-1}$$
 (S5)

where N_A is Avogadro's number (6.02×10²³ mole⁻¹), M_{carbon} is the molar mass of carbon (12.011 g mole⁻¹), M_{Tube} is the mass of a single nanotube, and D_{Tube} is the diameter of a nanotube.

The average length and diameter of HSWNTs were used for the calculation in this study $(L_{Tube} = 600 \text{ nm}, D_{Tube} = 1.03 \text{ nm}).^{S1,S5}$ The resulting M_{Tube} was 1.48×10^{-18} g and $N_{C-atoms}$ was 7.4×10^4 . The experimentally observed G-mode shifts of nanotubes were 1.8 and 2.7 cm⁻¹ for C12A7:e⁻ and Ca2N:e⁻, respectively. The calculated f_c values were 2.8×10^{-4} and 6.1×10^{-4} for

C12A7:e⁻ and Ca2N:e⁻, respectively. The corresponding f_c^* were 3.5×10^5 cm⁻¹ and 7.48×10^5 cm⁻¹ for C12A7:e⁻ and Ca2N:e⁻, respectively.

Figure S4. Raman spectra of pure HSWNTs and electride-HSWNT powder mixtures. The time after exposure of the powder mixtures to air is shown in parenthesis. The G-mode shift is magnified in the inset. a) C12A7:e⁻-HSWNT powder mixture. b) Ca2N:e⁻-HSWNT powder mixture.

Figure S5. Optical images of C12A7:e⁻-HSWNT films. The letters SKKU are placed behind the films. The transmittance decreased from 84.8 % to 30 % at 550 nm with the addition of 0 to 2.5 wt.% C12A7:e⁻ particles.

Figure S6. XPS and SEM analysis. a,b) Wide scan and C1s XPS data of pure PSWNTs, pure C12A7:e⁻ powder, and C12A7:e⁻-PSWNT powder mixture (50:50 wt.%). The inset compares the shift of binding energies with the addition of C12A7:e⁻ to PSWNTs. The peaks of graphitic structure of PSWNTs (C=C bonds @284.6 eV), defect sites (sp³ carbon atoms), and surface functional groups (C=O, COOH, and carbonates) were investigated. c) SEM image of C12A7:e⁻ PSWNT powder mixture.

Figure S7. Cross-sectional SEM image of the tape-activated PSWNT-Ag paste. The surface was activated 10 times using Scotch tapes.^{S6} The yellow arrows indicate nanotubes.

Figure S8. Comparison of the turn on voltage (V_{to}), maximum current density (I_{max}), and the electric field at maximum current density (V_{max}). a) C12A7:e⁻-PSWNT-Ag pastes. b) Ca2N:e⁻-PSWNT-Ag pastes.

REFERENCES

- S1. A. N. G. Parra-Vasquez, I. Stepanek, V. A. Davis, V. C. Moore, E. H. Haroz, J. Shaver, R. H. Hauge, R. E. Smalley and M. Pasquali, *Macromolecules*, 2007, 40, 4043-4047.
- S2. K. Kim, A. Moradian, J. Mostaghimi, Y. Alinejad, A. Shahverdi, B. Simard and G. Soucy, *Nano Res.*, 2009, 2, 800-817.
- S3. P. Puech, T. Hu, A. Sapelkin, I. Gerber, V. Tishkova, E. Pavlenko, B. Levine, E. Flahaut and W. Bacsa, *Physical Review B*, 2012, 85, 205412.
- S4. C. Laurent, E. Flahaut and A. Peigney, Carbon, 2010, 48, 2994-2996.
- S5. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley and R. B. Weisman, *Science*, 2002, 298, 2361-2366.
- S6. J. H. Park, P. S. Alegaonkar, S. Y. Jeon and J. B. Yoo, *Composites Science and Technology*, 2008, 68, 753-759.