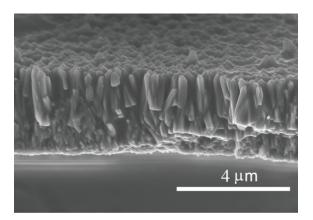
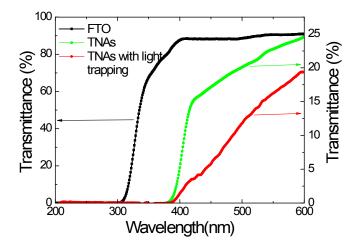
Electronic Supplementary Information

High performance quasi-solid-state self-powered UVphotodetectorbased on TiO₂ nanorod arrays


YanruXie,^a Lin Wei,^b Qinghao Li,^a Yanxue Chen,^{*a} Hong Liu,^{*c} Shishen Yan,^a Jun Jiao,^d Guolei Liu^a and Liangmo Mei^a

^aSchool of Physics, Shandong University, Jinan, 250100, P. R. China. E-mail: cyx@sdu.edu.cn


^bSchool of Information Science and Engineering, Shandong University, Jinan, 250100, P. R. China

^cState Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, P. R. China. E-mail: hongliu@sdu.edu.cn

^d Department of Mechanical & Materials Engineering, Department of Physics, PortlandState University, Post Office Box 751, Portland, Oregon 97207-0751, USA

Figure S1. The SEM cross-section micrographof TNAs coated with liquid crystal electrolyte after removing the solvent.

Figure S2. The transmission spectrum of FTO-glass, TNAs and TNAs with the quasisolid-state electrolyte.

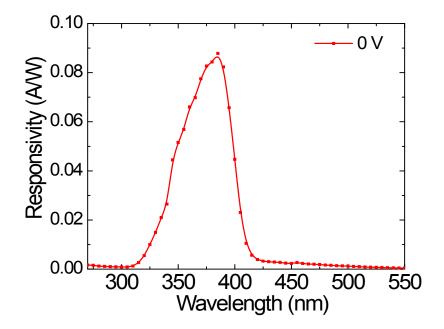
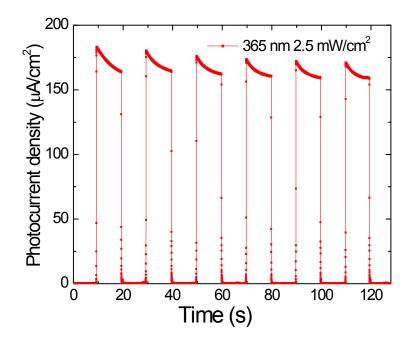



Figure S3. Spectral responsivity characteristic of the quasi-solid-state photodetector after being stored under ambient environment for 5 months

Figure S4. Incident light depended J-T characteristic of the quasi-solid-state photodetector after being stored under ambient environment for 5 months