Miniature all-solid-state heterostructure nanowire Li-ion batteries for nanoscale diagnosis of electrochemical processes

Vladimir P. Oleshko,^{*a,d} Thomas Lam,^b Dmitry Ruzmetov,^{b,c} Paul Haney^b, Henri J. Lezec^b, Albert V. Davydov,^a Sergiy Krylyuk,^{a,c} John Cumings^d, and A. Alec Talin^e

Fig. S1. FESEM, VLS-grown uniform single-crystalline Si NWs grown on a (111) Si wafer.

Fig. S2. X-ray spectrum acquired at the native oxide layer showing the Si-K peak at 1.74 keV and the O-K peak at 0.52 keV

d

Fig. S3. Electron images and schematic illustrating different stages of battery fabrication. (a-c) FESEM, after deposition of an initial metal collector layer (a), after deposition of a LiCoO₂ cathode layer (b), after deposition of a top n-Si amorphous anode layer (c). (d) Large field of view of as deposited NW-LiBs at 45° tilt and (e, f) cumulative and differential histograms on NW-LiB's maximum diameter (d_{max}) and length (l) distributions, respectively, N = 300 with the following statistical parameters: d_{max} (mean = 1.0 µm, SD = 0.1 µm, min = 0.75 µm, max = 1.3 µm, range = $0.5 \,\mu\text{m}$, median = $1.0 \,\mu\text{m}$); *l* (mean = $5.5 \,\mu\text{m}$, SD = $0.4 \,\mu\text{m}$, min = $4.2 \,\mu\text{m}$, max = $6.6 \,\mu\text{m}$, range = $2.5 \,\mu\text{m}$, median = $5.5 \mu m$). Blue line shows normal distribution curves with the same parameters.

Fig. S4. Constant current charging – open circuit potential curves and (a) slow scan linear voltammetry I-V characteristics; (b) a NW-LiB with 110 nm thick LiPON; (c, d) a NW-LiB with 180 nm thick LiPON; and (e, f) a thin film LiB with 360 nm thick LiPON (discharge shown in red)³⁷. The voltage scan rate for I-V curves is 0.16 mV/s. Copyright © 2012 American Chemical Society. Reproduced by permission.

Fig. S5. Measured vs. calculated *I–V* characteristics for the NW-LiB with LiPON ≈ 110 nm (same data as in Fig. S4b)³⁷. Model parameters are: $N_c = 2 \times 10^{19}$ cm⁻³, $n_0 = 3.5 \times 10^{16}$ cm⁻³, $\mu = 4.5 \times 10^{-9}$ cm²/V·s, $N_t = 10^{18}$ cm⁻³, $\delta = 32$, l = 10. Copyright © 2012 American Chemical Society. Reproduced by permission.

Fig. S6. (a) *Ex situ* HAADF STEM-EDX SI, the cycled NW-LiB, (b) 10 nm-wide HAADF-intensity profile along the orange line in (a), and (c) drift-corrected X-ray EDS SI line profile along the orange line in (a). (d) X-ray spectrum acquired in the point marked by red cross in (a). Note drops in intensities of phosphorus and oxygen X-ray lines at both LiPON-Li_{1-x}CoO₂ interfaces.