
Supplement S1: Derivation of the effective potential acting on stiff monolayers driven

over commensurate substrates

SUMMARY

In the following, we shall present a detailed account of
our analytical calculation of the total mean force exerted
on the center of mass of the colloidal monolayer in the
harmonic approximation. For the convenience of those
readers that are not anxious to delve into all the details
of these derivations, we provide the following quick sum-
mary.
For large stiffness of the colloidal layer, i.e., large repul-

sive Yukawa interaction strength, we regard the build-up
phase of a hopping wave as given by a field of small dis-
placement vectors ul of the colloidal particles from their
ideal lattice sites Rl on top of a collective rigid trans-
lation R of this lattice in the direction x of the exter-
nal driving force. We argue that during this build-up
phase, the monolayer is in quasistatic equilibrium, such
that statistical mechanics can be employed to compute
the thermally averaged mean force acting on its center of
mass. Furthermore, as we assume that the displacements
ul will be small in relation to the ideal lattice constant
of the monolayer, it is justified to employ a harmonic ap-
proximation for this task. For periodic boundary condi-
tions, the canonical distribution of the resulting harmonic
Hamiltonian factorizes into independent “phonon” con-
tributions, whose energy contributions and covariances
are completely determined by the underlying dynamical
matrix. It is then straightforward to calculate the ave-
raged covariances σxx, σxy and σyy of the displacement
components. To harmonic accuracy, it turns out that
these covariances also fully determine the effective total
force acting on the center of mass of the monolayer. The
final section provides some useful formulas for a practical
numerical implementation.

EQUATION OF MOTION OF THE COLLOIDAL

MONOLAYER

For overdamped Langevin dynamics, the equations of
motion of an N -particle system can be written as

γ
drp
dt

=Fp(
#»r ) (1)

for p = 0, 1, . . . , N − 1, where the total force

Fp(
#»r )=

∑

p′ 6=p

Fyuk(rp′ − rp)+Fsub(rp)+Fd+F
p
rand (2)

acting on particle p is the sum of the Yukawa forces ex-
erted by all other particles, the substrate force, the exter-
nal homogeneous force and the Langevin random force,
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FIG. 1. Schematic view of the potential landscape (12). The
direction of the external driving force Fd is indicated by an
arrow.

and #»r is the formal 2N -dimensional vector built from
all position vectors r0, . . . rN−1. The substrate force,
Fsub(rp), acting on particle i is the negative gradient of
the externally applied potential, Usub(rp) = −(U0/9){3+
2[cos(k1rp) + cos(k2rp) + cos(k3rp)]}, where the k-
vectors are chosen from the set ki/‖k‖ ∈ {(

√
3/2, 1/2),

(−
√
3/2, 1/2), (0, 1)} with norm ‖k‖ = 4π/a

√
3. This

choice of k-vectors produces a hexagonal arrangement of
potential wells with a lattice constant a and lattice vec-
tors g ∈ {(a, 0), (a/2,

√
3a/2)}. For a schematic view of

the system see Fig. 1.
If we perform an average over all N particles,

γ

N

N−1∑

p=0

drp
dt

=
1

N

N−1∑

p=0

∑

p′ 6=p

Fyuk(rp′ − rp)

+
1

N

N−1∑

p=0

[Fsub(rp) + Fd + F
p
rand] (3)

the Yukawa forces cancel in a pairwise manner due to
Newton’s third law, and we are left with a single equation
of motion

γ
dR

dt
=

1

N

N−1∑

p=0

Fsub(rp) + Fd +
1

N

N−1∑

p=0

F
p
rand (4)

for the center of mass

R =
1

N

N−1∑

p=0

rp (5)

of the overdamped monolayer, which resembles that of a
single overdamped Brownian diffuser in an external po-
tential. The final term in Eqn. (4) is the sum of all of
the random forces acting on the system. It is Gaussian
distributed and has a variance of 2kBT/

√
N .

Although solving the coupled equations of motion for
N interacting particles analytically without any approx-
imation is an impossible task, our claim is that there are
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exist a series of approximations that simplify Equation
4 sufficiently to obtain accurate theoretical predictions.
The motion of the center of mass of the monolayer is
governed by the constant driving force, the average sub-
strate force, and the total random Langevin force acting
on the monolayer. Although the last two forces are triv-
ial, the first, is not. The difficulty lies in the fact that
the substrate force acting on the center of mass when it
is located at R, F̄(R) = N−1

∑N−1
p=0 Fsub(rp,R) depends

on the positions of every particle in the system, which in
turn depend upon their mutual interactions as well as the
external forces acting on them. We therefore propose a
statistical treatment of the problem. If one imagines a
trajectory consisting of an arbitrarily large number of
buildup phases, then the mean velocity of the monolayer
is,

γ

〈
dR

dt

〉

=
〈
F̄
〉

R
+ Fd, (6)

where the average, 〈...〉, is taken over multiple build up
phases. So far, no tangible simplification to the system
has been made, other than that the motion of the center
of mass of the monolayer during the build up phase can
be thought of as the motion of a single particle exposed
to an effective substrate force Feff(R) =

〈
F̄
〉

R
. If the

distribution of F̄ is narrow, then it can be replaced by
its mean value Feff(R) in the equation of motion for the
center of mass,

γ
dR

dt
= Feff(R) + Fd + F̄random, (7)

we justify this simplification a posteriori in the supple-
ment S2.

QUASISTATIC EQUILIBRIUM

In order to learn something about the functional form
of Feff(R), we make two assumptions. First, we assume
that configurations from different buildup phases with
the same R are not only statistically independent, but
are drawn from the equilibrium distribution of the sys-
tem. We justify this assumption from the fact that the
monolayer travels along the substrate walls very slowly.
The second assumption we make is that the interparticle
potential is so large that the total potential energy of the
system can be approximated by a second order Taylor
expansion.

The first assumption is that the monolayer, during the
buildup phase, moves so slowly that for a given value
of R, the probability of observing a microstate obeys a
Boltzmann distribution,

dρ( #»r ,R) = dNr δ

(

N−1
∑

i

ri −R

)

e−βUtot(
#»r ), (8)

where β = 1/kBT . In order to obtain analytical results,
the needs to be simplified further. The second assump-
tion, which is the topic of the next section, will serve this
purpose.

THE HARMONIC CRYSTAL

In the absence of any external potential, colloidal par-
ticles that interact with one another via a screened re-
pulsive Yukawa potential Uyuk tend to form a triangular
lattice. In the present work, the particle density is chosen
precisely in such a way that this lattice is commensurate
with the hexagonal structure of the underlying substrate.
The total potential energy of the resulting system is

Utot =
1

2

N−1∑

p6=p′

Uyuk( |rp − rp′ | ) +
N−1∑

p=0

Usub(rp)

−Fd

N−1∑

p=0

rxp . (9)

In order to calculate the Boltzmann average Feff(R) =
Fx

eff(R) defined by this potential analytically further ap-
proximations must be made. Among the most successful
and widely used in solid state physics is the harmonic
approximation, which rests on the idea that particles re-
siding in a crystal lattice will mostly perform only small
amplitude vibrations around their equilibrium positions,
such that a second order Taylor expansion of the po-
tential with respect to the deviations from these equi-
librium positions will already capture most of the rele-
vant physics. By imposing periodic boundary conditions
(PBCs) and exploiting the resulting translational invari-
ance of the system, the dynamical problem can then be
reformulated in terms of certain collective phonon vari-
ables defined in Fourier space, which are completely de-
coupled from each other. At least to a good approxima-
tion, the whole procedure thus maps the original problem
to a non-interacting one, an enormous simplification for
dynamical calculations as well as for doing statistical me-
chanics.
For our present purposes, the instantaneous position

rp of an individual colloid will be disassembled as fol-
lows. Let R = (R, 0) denote an arbitrary vector, which
we will use to describe the global translation of the trian-
gular colloid layer parallel to the direction of the driving
force. Rp denotes the position of the lattice site that
the pth particle is assigned to, and up denotes a small
residual displacement of the particle with respect to the
underlying lattice. Altogether, we then write

rp = R+Rp + up. (10)
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In terms of this parametrization

Utot =
1

2

N−1∑

p′ 6=p

Uyuk(|Rp + up −Rp′ − up′ |) +
N−1∑

p=0

Usub(R +Rp + up)− Fd

N−1∑

p=0

uxp − Fd

(

NR+

N−1∑

p=0

Rx
p

)

. (11)

Since the substrate potential is periodic in Rp and the Yukawa potential depends only on the relative distance between
two particles, this simplifies to

Utot =
1

2

N−1∑

p6=p′

Uyuk( |Rpp′ + up − up′ | ) +
N−1∑

p=0

Usub(R + up)− Fd

N−1∑

p=0

uxp − Fd

(

NR+

N−1∑

p=0

Rx
p

)

, (12)

where Rpp′ = Rp′ −Rp is the difference vector between lattice site p and p′.
In the high coupling limit, when the inter-particle interaction strength is large, the deviations up of the particle

positions from the ideal lattice sites Rp are typically small, so a second order Taylor expansion

Utot =
1

2

N−1∑

l,l′=0

∑

µ,ν

uµl φ
ll′

µν u
ν
l′ +

π

a
Fmax

N−1∑

l=0

{

cos
2πR

a

(

(uxl )
2 +

1

3
(uyl )

2

)

+
2

3
(uyl )

2

}

+

(

Fmax sin
2πR

a
− Fd

)N−1∑

l=0

uxl + C(R, {Rp}), (13)

with respect to up may yield a good approximation to the
total energy of the system. Unlike the particle induces
p and p′, the indicies l and l′ denote lattice site induces
that can be equal to each other in the double sum above,
as can be seen in the definition of φll

′

µν ,

φll
′

µν =
∂2

∂uµl ∂u
ν
l′

N−1∑

p6=p′

Uyuk( |up − up′ +Rpp′ | )|up=up′=0.

(14)

C(R, {Rp}) is the value of the total potential when all ul

are zero, and Fmax = 24πkBT/a is the maximum force
the substrate is able to exert. Using the definition of
the substrate potential, the 2 × 2 matrix of the second
derivatives of the external substrate

ψ(R) =
2πFmax

3a

(
3 cos 2πR

a
0

0 cos 2πR
a

+ 2

)

1 (15)

turns out to be diagonal when evaluated at R = (R, 0).
Collecting linear and quadratic terms, we rewrite (13) in
the compact form

Utot =
1

2

N−1∑

l,l′=0

∑

µ,ν

uµl D̄
ll′

µν(R)u
ν
l′ (16)

+

(

Fmax sin
2πR

a
− Fd

)N−1∑

l=0

uxl + C(R, {Rl})

where we have set

D̄
ll′

µν(R) ≡ φll
′

µν + δll
′

ψµν(R). (17)

Translational invariance allows to further reduce

1

2

N−1∑

l,l′=0

∑

µ,ν

uµl D̄
ll′

µν(R)u
ν
l′ =

N

2

N−1∑

l=0

∑

µ,ν

uµl D̄
l0
µν(R)u

ν
0

(18)

Within equilibrium statistical mechanics, our N -
particle system is described by the unnormalized proba-
bility measure

dρ( #»u) = dNu e−βUtot(
#»u), (19)

where β = 1/kBT ,
#»u is the formal 2N -dimensional vec-

tor built from all displacement vectors u0, . . .uN−1, and

dNu =
∏N−1

l=0 d2ul. Imposing the constraint that the sum
of all the uxl be zero amounts to considering the restricted
probability measure

dρ( #»u |R) = dNu δ

(
∑

l

uxl

)

e−βUtot(
#»u )

= dNu δ

(
∑

l

uxl

)

exp

{

−β
2

#»uT
D̃

#»u

}

. (20)

Ensemble averages of observables A({ul}) are given by

〈A( #»u)〉
∣
∣
R
=

1

Z(R)

∫

dNuA( #»u)dρ( #»u |R), (21)

whose normalization Z(R) =
∫
dNu dρ( #»u |R) may be

called a restricted canonical partition function.
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DISCRETE FOURIER TRANSFORM

In contrast to (19), the measure (20) is not a simple
Gaussian one, as the variables ul are not independent
due to the delta constraint imposed. However, we now
show that by virtue of a discrete Fourier transform, (20)
can actually be factorized into simple components, which
clears the way for analytical calculations.

As a prerequisite, we introduce the first Brilloun zone
B of the underlying hexagonal lattice with a total num-
ber of N = NxNy particles. For simplicity, we choose

Nx = Ny =
√
N , and furthermore, without loss of gen-

erality, we assume Nx and Ny to be even numbers. By
definition, B consists of all cosets represented by wave
vectors that are commensurate with the imposed bound-
ary conditions, two such representatives considered as
equivalent if they differ by an arbitrary reciprocal vec-
tor. For periodic boundary conditions in both the x and
y direction, the allowed representatives are

qx =
2π

a

nx

Nx

, qy =
4π√
3a

ny

Ny

, (22)

where nx and ny are integers. A convenient choice of a
set of representative wave vectors for B is provided by
the Voronoi cell around a point in reciprocal space (see
Fig. 2).

Now we can introduce the discrete Fourier transform

uµl =
1√
N

∑

q∈B
ũµ(q)eiqRl . (23)

We have

N−1∑

l=0

uxl =
1√
N

∑

q∈B
ũx(q)

∑

l

eiqRl

︸ ︷︷ ︸

Nδ(q,0)

=
√
Nũx(0). (24)

Furthermore

1

2

N−1∑

l,l′=0

∑

µ,ν

uµl D̄
ll′

µν(R)u
ν
l′ (25)

=
1

2N

N−1∑

l,l′=0

∑

q,q′

∑

µ,ν

ũµ(q)eiqRl D̄
ll′

µν(R)ũ
ν(q′)eiq

′R′
l

=
1

2

∑

q,q′

∑

µ,ν

ũµ(q)




1

N

N−1∑

l,l′=0

eiqRlD̄
ll′

µν(R)e
iq′R′

l





︸ ︷︷ ︸

≡D̄µν(q,q′,R)

ũν(q′).

(

0, −4π
√

3a

)

(

−2π
a ,

−2π
√

3a

)

FIG. 2. q-vectors (points) for a 24×24 hexagonal monolayer.
The gray dots are lattice sites belonging to the reciprocal
lattice of the original lattice. The four green circles mark the
special points defined in Eqn. (37) and belong to B0. The
blue crosses belong to B+ and the red boxes belong to the
set B

−
. The empty circles at two of the vertices of the small

hexagon are points that must be omitted from to avoid double
counting, since they differ from already included vertex points
by a reciprocal lattice vector.

Using translational invariance, we write

D̄µν(q,q
′, R) =

1

N

N−1∑

l,l′=0

eiqRlD̄
l−l′,0
µν (R)eiq

′R′
l (26)

=
1

N

N−1∑

l,l′=0

eiq(Rl+R′
l)D̄

l,0
µν(R)e

iq′R′
l

=
1

N

N−1∑

l=0

eiqRlD̄
l,0
µν(R)

N−1∑

l′=0

ei(q+q′)R′
l

︸ ︷︷ ︸

=Nδq+q′,0

This suggests we define

D̄µν(q, R) :=

N−1∑

l=0

D̄
l,0
µν(R)e

iqRl . (27)

Additional symmetry of D̄ll′

µν(R) under exchange of l ↔ l′

also yields D̄l,0
µν(R) = D̄0,l

µν(R) = D̄−l,0
µν (R), and thus

[
D̄µν(q, R)

]∗
=

N−1∑

l=0

D̄
−l,0
µν (R)e−iqRl = D̄µν(±q, R),

(28)
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i.e., D̄µν(q, R) ∈ R, a fact that could also be anticipated
from the manifest reality of

1

2

N−1∑

l=0,l′

∑

µ,ν

uµl D̄
ll′

µν(R)u
ν
l′ (29)

=
1

2

∑

q,q′∈B

∑

µ,ν

ũµ(q)D̄µν(q
′, R)δq+q′,0ũ

ν(q′)

=
1

2

∑

q∈B

∑

µ,ν

ũµ(−q)D̄µν(q, R)ũ
ν(q). (30)

From the definition of the discrete Fourier transform
(23) it follows immediately that since the components uµl
are real-valued, their Fourier amplitudes must obey

ũµ(−q) = [ũµ(q)]∗. (31)

Thus, if we introduce the complex two-dimensional vector

ũ(q) =

(
ũx(q)
ũy(q)

)

(32)

and its adjoint

ũ+(q) =
(
ũx(−q) ũy(−q)

)
, (33)

we obtain the compact formula

1

2

N∑

l=1,l′

∑

µ,ν

uµl D̄
ll′

µν(R)u
ν
l′ =

1

2

∑

q∈B
ũ+(q) · D̄(q, R) · ũ(q).

(34)

The delta function constraint in the measure (20) is
rewritten as

δ (ũx(0)) = δ
(√

Nũx(0)
)

=
δ (ũx(0))√

N
. (35)

Finally, we need to express the volume element dNu ap-
pearing in the measure (20) in terms of the Fourier am-
plitudes (23). Taking the real part of (23), we obtain

uµl =
1√
N

∑

q∈B
[ℜũµ(q) + iℑũµ(q)][cos(qRl) + i sin(qRl)]

=
∑

q

[
cos(qRl)√

N
ℜũµ(q) − sin(qRl)√

N
ℑũµ(q)

]

, (36)

which is reminiscent of an orthogonal transformation,
except that we seem to have doubled the number of
variables. To avoid such a double-counting, note that
the reality condition ũµ(−q) = [ũµ(q)]∗ implies that
ℜũµ(−q) = ℜũµ(q) and ℑũµ(−q) = −ℜũµ(q), are lin-
early dependent. The latter condition requires care. By
definition, two vectors of the first Brilloun zone are re-
garded as equal if they differ by a reciprocal lattice vector
G. But this implies the possibility that q and −q can
well be representatives of the same coset of B. A triv-
ial case is the zero vector Q0 = 0, but in our hexagonal
lattice this applies to three more so-called “special high-
symmetry vectors”. We shall denote the subset of B that
holds these four vectors

Q0 = (0, 0) , Q1 =

(

0,
2π√
3a

)

,

Q2 =

(
π

a
,
π√
3a

)

, Q3 =

(
π

a
,− π√

3a

)

, (37)

as B0. Of course, for Q ∈ B0 the Fourier amplitudes
ũ(Q) must be real as can be directly understood from
observing that Q · Rl is an integer multiple of π. The
residual N − 4 elements of the Brilloun zone are given by
distinct pairs of representatives (q,−q) and can now be
organized into two subsets B± of positive and negative
“parity” by any convenient definition. This leads to a
partition

B = B0 ∪ B+ ∪ B− (38)

of the total Brilloun zone. In Fig. 2, we have illustrated
such a partition of B into subsets with zero (green circled
points), positive (blue points) and negative (red points)
parity. In this notation, (36) may be rewritten in a more
concise way as

uµl =
∑

π(Q)∈B0

(±1)√
N
ũµ(Q) (39)

+
∑

q∈B+

[
2 cos(qRl)√

N
ℜũµ(q) − 2 sin(qRl)√

N
ℑũµ(q)

]

.

As this construction reveals, a new set of 2N = 2[4+2×
(N − 4)/2] independent real variables is given by

ũµ(Q), Q ∈ B0, µ = x, y (40)

ℜũµ(q), ℑũµ(q), q ∈ B+, µ = x, y. (41)

In terms of these variables, we can rewrite

1

2

∑

q∈B
ũ+(q) · D̄(q, R) · ũ(q) = 1

2

∑

Q∈B0

ũµ(Q)D̄µν(Q, R)ũ
ν(Q) +

∑

q∈B+

[ũµ(q)]∗D̄µν(q, R)u
ν(q)

=
1

2

∑

Q∈B0

ũµ(Q)D̄µν(Q, R)ũ
ν(Q) +

∑

q∈B+

[ℜũµ(q) − i[ℑũµ(q)]∗]D̄µν(q, R)[ℜuν(q) + iℑuν(q)]. (42)
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In the last line the imaginary contributions must cancel identically for the sum to be real, and we obtain

1

2

∑

q∈B
ũ+(q) · D̄(q, R) · ũ(q) (43)

=
1

2

∑

Q∈B0

D̄µν(Q, R)ũ
µ(Q)ũν(Q) +

∑

q∈B+

D̄µν(q, R)[ℜũµ(q)ℜuν(q) + ℑũµ(q)ℑuν(q)]

=
1

2

∑

Q∈B0

ũT (Q)D̄(Q, R)ũ(Q) +
∑

q∈B+

ℜũT (q)D̄(q, R)ℜũ(q) +
∑

q∈B+

ℑũT (q)D̄(q, R)ℑũ(q). (44)

As to the volume element in the measure (20), we have

dNu = J ·
∏

Q∈B0

d2ũ(Q) ·
∏

q∈B+

d2ℜũ(Q)d2ℑũ(Q) (45)

where J is the determinant of the Jacobi matrix of the discrete Fourier transformation, and an additional factor arises
from the delta function constraint, since

δ (ũx(0)) = δ
(√

Nũx(0)
)

=
δ (ũx(0))√

N
. (46)

Writing down the unnormalized probability measure

dρ̃({ũ(q)}|R) =
∏

Q∈B0

d2ũ(Q) ·
∏

q∈B+

d2ℜũ(q)d2ℑũ(q) · δ (ũx(0)) e− β
2

∑
q∈B ũ+(q)·D̄(q,R)·ũ(q) (47)

which obviously factorizes into

dρ̃({ũ(q)}|R) =
∏

Q∈B0

dρ̃(0)(ũ(Q)|R) ·
∏

q∈B+

dρ̃(R)(ũ(q)|R) · dρ̃(I)(ũ(q)|R) (48)

as promised, where

dρ̃(ũ(0)|R) = d2ũ(0)δ (ũx(0)) e−
β
2 ũT (0)D̄(0,R)ũ(0), (49)

dρ̃(0)(ũ(Q)|R) = d2ũ(Q)e−
β
2 ũT (Q)D̄(Q,R)ũ(Q), Q ∈ B0 (50)

dρ̃(R)(ũ(q)|R) = d2ℜũ(q)e−βℜũT (q)D̄(q,R)ℜũ(q), q ∈ B+ (51)

dρ̃(I)(ũ(q)|R) = d2ℑũ(q)e−βℑũT (q)D̄(q,R)ℑũ(q), q ∈ B+. (52)

EXPLICIT FORMULAE

Having fully characterized the coordinate transformation that transforms the dynamical matrix of the harmonic
crystal into Fourier space, we now present the explicit form of D̄(q). To this end, we make use of the abbreviations,

Cx(q) = cos
(a

2
qx

)

, Sx(q) = sin
(a

2
qx

)

, (53)

Cy(q) = cos

(

a
√
3

2
qy

)

, Sy(q) = sin

(

a
√
3

2
qy

)

, (54)

f =
2πFmax

3a
, g =

1

r
U ′
yuk(r)|r=a, (55)

h =

[

U ′′
yuk(r)−

1

r
U ′
yuk(r)

]

r=a

. (56)

The quantities are the result of performing a Fourier transformation on a hexagonal lattice and the quantities in
Eqn. (56) are the coupling parameters of the particles in the monolayer. These parameters depend upon the first and
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second derivatives of the substrate potential and the inter-particle interactions. For the Yukawa potential,

g = − Γ̃e−κa

a3
[1 + κa] = − Γ

a2
(1 + κa), (57)

h =
Γ̃e−κa

a3
[3 + 3κa+ (κa)2] =

Γ

a2
[3 + 3κa+ (κa)2].

(58)

As in previous work, the coupling strength between two colloids, Γ, is the potential energy between two particles that

are separated by one lattice constant. Thus Γ := Γ̃ e−κa

a
. We note that for all allowed values of Γ, a, and κ, the

absolute value of g is strictly larger than that of h. Furthermore, since these expressions are not quadratic in a, we

do not express them in terms of the density of the system, ρ−1 = N−1
√
3
2 a

2, although that might be a more natural
definition.
In terms of this parametrization, we find that

D̄(q) =

(
D0(q, R) +D11(q, R) D12(q, R)

D12(q, R) D0(q, R)

)

(59)

where

D0(q, R) =4g
[
2− C2

x(q) − Cx(q)Cy(q)
]
+ 3h [1− Cx(q)Cy(q)] + f [2 + cos(2πR/a)] (60)

D11(q, R) =2h
[
1 + Cx(q)Cy(q) − 2C2

x(q)
]
− 4f sin2(πR/a) (61)

D12(q, R) =
√
3 hSx(q)Sy(q). (62)

The results we shall derive below will involve the elements of the inverse matrix

Ḡ(q, R) := [βD̄(q, R)]−1 =
1

β det D̄(q)

(
D0(q) −D12(q)

−D12(q) D0(q) +D11(q)

)

. (63)

Calculation of covariances

We now look at the expectation values

σµν(R) =

〈

1

N

∑

l

uµl u
ν
l

〉∣
∣
∣
∣
∣
R

. (64)

Since

1

N

N−1∑

l=0

uµl u
ν
l =

1

N2

∑

q,q′

ũµ(q)ũν(q′)
∑

l

ei(q+q′)Rl

︸ ︷︷ ︸

Nδ(q+q′,0)

=
∑

q

ũµ(q)ũν(−q), (65)

this reduces to

σµν(R) =
1

N

∑

q

〈ũµ(q)ũν(−q)〉
∣
∣
R

=
1

N

∑

Q∈B0

〈ũµ(Q)ũν(Q)〉
∣
∣
R
+

1

N

∑

q∈B+

〈ũµ(q)ũν(−q)〉
∣
∣
R
+

1

N

∑

q∈B−

〈ũµ(q)ũν(−q)〉
∣
∣
R

=
1

N

∑

Q∈B0

〈ũµ(Q)ũν(Q)〉
∣
∣
R
+

2

N

∑

q∈B+

ℜ 〈ũµ(q)ũν(−q)〉
∣
∣
R

=
1

N

∑

Q∈B0

〈ũµ(Q)ũν(Q)〉
∣
∣
R
+

2

N

∑

q∈B+

〈ℜũµ(q)ℜũν(q) + ℑũµ(q)ℑũν(q)〉
∣
∣
R
. (66)
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To compute these expectation values, we use the well-known formula

∫
dDxxixj e

− 1
2x

TAx

∫
dDx e−

1
2x

TAx
= A−1

ij (67)

valid for Gaussian integrals, which yields

〈ũµ(Q)ũν(Q)〉
∣
∣
R
= Ḡ

µν(Q, R), Q ∈ B0 (68)

〈ℜũµ(q)ℜũν(q)〉
∣
∣
R
= 〈ℑũµ(q)ℑũν(q)〉

∣
∣
R
=

Ḡµν(q, R)

2
, q ∈ B+ (69)

Due to the presence of the delta constraint, special care has to be taken for Q = 0. Since the matrix D̄(q, R) is
actually diagonal for q = 0 (cf. Eqn. (62) below), we have

〈ũµ(0)ũν(0)〉
∣
∣
R
=

{
1/βD̄yy(0, R), µ = ν = y
0, else

=

{
Ḡyy(0, R), µ = ν = y
0, else

(70)

In summary, we have shown that

σyy(R) =
1

N

∑

Q∈B0

Ḡ
yy(Q, R) +

2

N

∑

q∈B+

Ḡyy(q, R)

2
+

2

N

∑

q∈B+

Ḡyy(q, R)

2

=
1

N

∑

Q∈B0

Ḡ
yy(Q, R) +

2

N

∑

q∈B+

Ḡ
yy(q, R)

=
1

N

∑

Q∈B0

Ḡ
yy(Q, R) +

1

N

∑

q∈B+

Ḡ
yy(q, R) +

∑

q∈B−

Ḡ
yy(q, R) (71)

i.e.,

σyy(R) =
1

N

∑

q∈B
Ḡ
yy(q, R). (72)

In the same way we can show that

σxx(R) =
1

N

∑

q∈B\{0}
Ḡ
xx(q, R). (73)

and also

σxy(R) =
1

N

∑

q∈B\{0}
Ḡ
xy(q, R). (74)

However, a closer examination reveals that due to the
special structure of the matrix elements

Ḡ
xy(q, R) = −

√
3hSx(q)Sy(q)

β det D̄(q)
(75)

the sum above actually vanishes. To show this, we first
observe that the contributions of all q-vectors of the
types (qx, 0), (0, qy) and (qx, 2π/a

√
3) are zero because of

the vanishing product of the sine functions Sx(q)Sy(q).
The remaining contributions from the wavevectors q ∈
B+∪B− can be organized into pairs of (qx, qy), (qx,−qy),
whose contributions mutually cancel (note that the nu-
merator of (75) assumes different signs for the vectors
in each couple, whereas the sign of the determinant in
the denominator remains the same). In retrospect, the

fact that the cross correlation σxy(R) is found to be zero
within the harmonic approximation could have been an-
ticipated from the fact that the dynamical matrix is con-
structed from (i) the sum of a pairwise central potential
and (ii) a substrate potential with vanishing mixed sec-
ond derivatives along the path (R, 0).

In summary we have the covariances

σxx(R) =
1

N

∑

q∈B\{0}
Ḡ
xx(q, R) (76)

σyy(R) =
1

N

∑

q∈B
Ḡ
yy(q, R) (77)

σxy(R) = 0 (78)

which are the results announced in Eqn. (8) of the main
paper.

MEAN FORCE

By symmetry, the only nonzero component of the total
force acting on the center of mass of the monolayer (7)
located at R = (R, 0) is along the x-direction. Before
averaging, this component of is

Feff(R) =
Fmax

N

N−1∑

l=0

sin[kx(u
x
l +R)] cos(kyu

y
l ). (79)
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Here kx = 2π/a and ky = 2π/a
√
3. Using the trigono-

metric identity sin(x + y) = sinx cos y + cosx sin y, we
rewrite this as

Feff(R) =
Fmax

N
cos(kxR)

N−1∑

l=0

sin(kxu
x
l ) cos(kyu

y
l ) +

Fmax

N
sin(kxR)

N−1∑

l=0

cos(kxu
x
l ) cos(kyu

y
l )

=
Fmax

N
cos(kxR)

N−1∑

l=0

eikxu
x
l − e−ikxu

x
l

2i

eikyu
y

l + e−ikyu
y

l

2

+
Fmax

N
sin(kxR)

N−1∑

l=0

eikxu
x
l + e−ikxu

x
l

2

eikyu
y

l + e−ikyu
y

l

2
(80)

=
Fmax cos(kxR)

4i

1

N

N−1∑

l=0

[

ei(kxu
x
l +kyu

y

l
) + ei(kxu

x
l −kyu

y

l
) − ei(−kxu

x
l +kyu

y

l
) − e−i(kxu

x
l +kyu

y

l
)
]

+
Fmax sin(kxR)

4

1

N

N−1∑

l=0

[

ei(kxu
x
l +kyu

y

l
) + ei(kxu

x
l −kyu

y

l
) + ei(−kxu

x
l +kyu

y

l
) + e−i(kxu

x
l +kyu

y

l
)
]

.

If we define the four wave vectors

k(±±) :=

(
±kx
±ky

)

, (81)

we can restate this as

Feff(R) =
Fmax cos(kxR)

4i

1

N

N−1∑

l=0

[
eik(++)ul + eik(+−)ul − eik(−+)ul − eik(−−)ul

]

+
Fmax sin(kxR)

4

1

N

N−1∑

l=0

[
eik(++)ul + eik(+−)ul + eik(−+)ul + eik(−−)ul

]
. (82)

To compute the Feff(R) of the mean net force, we work out the averages

〈eik(±±)ul〉|R =

∫
dNuδ (

∑
uxm) exp

{

−β
2

#»uT D̃
#»u + iuT

l · k(±±)

}

∫
dNuδ (

∑
uxm) exp

{

−β
2

#»uT D̃
#»u
} . (83)

At this point it would be straightforward to follow the prescription of the preceding paragraph, i.e., we could rewrite
the above integral in terms of the real variables ℜũ(q),ℑũ(q) and utilize the well-known Gaussian formula

∫
dDx e−

1
2x

TAx+b
T ·x

∫
dDx e−

1
2x

TAx
= e

1
2

∑
ij biA

−1
ij bj . (84)

An alternative evaluation proceeds by completion of squares in (83). First, slightly symmetrize this expression,
rewriting it as

〈eik(±±)ul〉|R =

∫
dNuδ (

∑
uxm) exp

{

−β
2

#»uT
D̃

#»u + i
2u

T
l · k(±±) +

i
2k

T
(±±) · ul

}

∫
dNuδ (

∑
uxm) exp

{

−β
2

#»uT D̃
#»u
} . (85)

With the help of (23) and (34) this is restated as

−β
2

#»uTβD̃
#»u +

i

2
uT
l k(±±) +

i

2
k(±±)ul (86)

=
∑

q

[

ũ+(q) · βD̄(q, R)

2
· ũ(q) + i

2
ũ+(q)

k(±±)e
−iqRl

√
N

+
i

2

k(±±)e
iqRl

√
N

ũ(q)

]

= −1

2

∑

q

[
ũ+(q) · βD̄(q, R) · ũ(q)− iũ+(q) · Ē(q; l)− iĒ+(q; l) · ũ(q)

]
,
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where we have introduced the abbreviation

Ē(q; l) :=
k(±±)e

−iqRl

√
N

. (87)

For all nonzero q we now apply the identity

U
+
DU +U

+
V + V

+
U = (U+ + V

+
D

−1)D(U +D
−1

V )− V
+
D

−1
V (88)

in the form

ũ+(q) · βD̄(q, R) · ũ(q) − iĒ+(q; l) · ũ(q) − iũ+(q) · Ē(q; l)
=
[
ũ+(q)− iĒ+(q; l)Ḡ(q, R)

]
· βD̄(q, R) ·

[
ũ(q)− iḠ(q, R)Ē(q; l)

]
+ Ē

+(q; l) · Ḡ(q, R) · Ē(q; l)

=
[
ũ+(q)− iĒ+(q; l)Ḡ(q, R)

]
· βD̄(q, R) ·

[
ũ(q)− iḠ(q, R)Ē(q; l)

]
+

1

N
kT
(±±) · Ḡ(q, R) · k(±±). (89)

Note that the l-dependence has disappeared from the last contribution. On the other hand, due to the delta function
constraint, the q = 0 contribution to the above sum

ũ+(0) · βD̄(0, R) · ũ(0)− iũ+(0) · Ē(0; l)− iĒ+(0; l) · ũ(0) (90)

actually reduces to

βD̄
yy(0, R)(ũy(0))2 − 2iũy(0)

ky(±±)√
N

. (91)

Since 1/βD̄
yy(0, R) = Ḡ

yy(0, R)0 (cf. Eqn. (70)), we complete the squares as

βD̄
yy(0, R)(ũy(0))2 − 2iũy(0)

ky(±±)√
N

= βD̄
yy(0, R)

(

ũy(0)− i
Ḡ
yy(0, R)ky(±±)√

N

)2

+
1

N
Ḡ
yy(0, R)

(

ky(±±)

)2

, (92)

which is also independent of l. As anticipated from (84), we end up with

〈eik(±±)ul〉|R = exp






−1

2
kT
(±±) ·

1

N

∑

q 6=0

Ḡ(q, R) · k(±±)






. (93)

Comparison with (72)-(73) reveals that this can be rewritten in the compact form

〈eik(±±)ul〉|R = exp

{

−kT
(±±) ·

σ̄(R)

2
· k(±±)

}

, (94)

where

σ̄(R) =

(
σxx(R) σxy(R)
σxy(R) σyy(R)

)

(95)

is the 2× 2 matrix of covariances.
In applying these results to (82), the term ∝ cos(kxR) is identically zero as could have been anticipated from

symmetry arguments, since the contributions from the four different vectors k(±±) cancel each other. In the second
term ∝ sin(kxR), it is also clear that the terms for k(−−) and k(−+) will give the same result as those for for k(−−)

and k(+−), respectively. Thus we are left with

〈Fnet〉|R = Fd +
Fmax sin(kxR)

2

(

e−kT
(++)·

σ̄(R)
2 ·k(++) + e−kT

(+−)·
σ̄(R)

2 ·k(+−)

)

= Fd +
Fmax sin(kxR)

2

(

e−
1
2σxxk

2
x−σxykxky− 1

2σyyk
2
y + e−

1
2σxxk

2
x+σxykxky− 1

2σyyk
2
y

)

, (96)

i.e.,

Feff(R) = −Fmax sin(kxR) cosh (σxykxky) exp

{

−1

2

(
σxxk

2
x + σyyk

2
y

)
}

. (97)
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Reverting to the former definitions kx = 2π/a and ky = 2π/a
√
3, we end up with

Feff(R) = −Fmax sin

(
2πa

R

)

cosh

(
4π2

√
3a2

σxy

)

exp

{

−2π2

a2

[

σxx +
σyy
3

]}

. (98)

Taking advantage of the fact that σxy is zero, we finally obtain,

Feff(R) = −Fmax sin

(
2πa

R

)

exp

{

−2π2

a2

[

σ2
x +

σ2
y

3

]}

(99)

as presented in Equation 7 of the main paper.


