
Supplement S2

SUMMARY

This part of the supplementary material includes a
more detailed presentation of the methods used to com-
pare the simulation data with theoretical predictions and
a short discussion on the finite size effects in the system.

DATA ANALYSIS

In this section, we present a detailed description of
how data were obtained from simulations and compared
to the theoretical results obtained is Supplement S1.
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FIG. 1. Total displacement (first panel), periodic center of
mass (second panel), variance of the relative displacements
of particles, ui, in the x and y directions (third and fourth
panels), and the net substrate force acting on the monolayer
(fifth panel), all plotted as a function of time for part of a
trajectory. The inter-particle interaction strength is Γ/kBT =
1.147 and the driving force Fd/Fmax = 0.989. The data points
are plotted in blue if the monolayer is undergoing a buildup
phase.

As a representative example, we use a part of the tra-
jectory of a monolayer with Γ/kBT = 1.147, driven by
a force Fd/Fmax = 0.989. Standard trajectories used for
the article were twice as long as the fragment considered
here. Similar to the main article, Figure 1 presents the
total displacement, the periodic center of mass, the vari-
ances of the particle positions, and the net substrate force
acting on the monolayer. Data drawn in blue belong to
the build up phase, whereas data belonging to configu-
rations in which a hopping wave is traveling through it
are colored in red. The periods of rapid motion (hopping
waves) are characterized either by the rapid change of

total displacement (top) or spikes in all of the remaining
quantities. The buildup phase coincides with plateaus in
the total displacement and regions with relatively small
changes in other quantities. We used the arbitrarily cut-
off, σ2

x/a
2 < 0.85×10−4 in order to differentiate between

the two phases.
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FIG. 2. Variance of the relative displacements of particles, ui,
in the x direction, σ2

x, as a function of the periodic position of
the center of mass, R. The inter-particle interaction strength
is Γ/kBT = 1.147 and the driving force Fd/Fmax = 0.989.

As can be seen in Figure 2, where σ2
x is plotted as a

function of the periodic position of the center of mass,
values that correspond to the buildup phase are all bun-
dled in a small region of R. In Figure 3, we zoomed in
on this region and present σ2

x, σ
2
y and Fsub, all as a func-

tion of R. The theoretical predictions of the mean value
of these quantities has been plotted next to the data.
Furthermore, our theory predicts that, in the buildup
phase, these distributions are independent of the ap-
plied driving force. In Figure 4, we compare the sim-
ulation results for a trajectory of a monolayer driven by
Fd/Fmax = 0.987, 0.989, and 1.002 with the theoretical
prediction. Evidently, the distributions of the substrate
forces of these monolayers overlap strongly.
We have plotted, in Figure 5, a histogram of the net

substrate force Fsub(R) acting on the monolayer with the
intention not only to show that the theoretical prediction
is very close to its expectation value, but that the dis-
tribution is also very narrow. As a result, one can, to
a good approximation, use Feff(R) as the effective sub-
strate force acting on the monolayer.
So far, we have only considered driving forces Fmax >

Fd > F eff
max, where F eff

max is the maximum restoring force
of Feff(R). In this parameter regime, the monolayer is
able to drift up to R = 0.25a, but also remain in quasi-
static equilibrium as it does so. If the driving force is
below F eff

max, the monolayer gets pinned by the effective
substrate at the position R0 such that Feff(R0)+Fd = 0.
The monolayer then oscillates about R0 for a while un-
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FIG. 3. Variances of the relative displacements of particles,
ui, in the x and y directions and the net substrate force acting
on the monolayer as a function of the periodic position of
the center of mass, R, restricted the buildup phase. The
inter-particle interaction strength is Γ/kBT = 1.147 and the
driving force Fd/Fmax = 0.989. The theoretical predictions
are indicated by the solid black lines. The threshold value of
σ2
x used to differ between the phases is denoted by the dashed

gray line which is located at σ2
x/a

2 = 8.5× 10−4.
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FIG. 4. Net substrate force acting on the monolayer driven
by Fd/Fmax = 0.987, 0.989, and 1.002 as a function of the
periodic position of the center of mass, R. The inter-particle
interaction strength is Γ/kBT = 1.147. The theoretical pre-
diction is indicated by the solid black line.

til a small group of particles spontaneously form a crit-
ical “hopping cluster” (red particles in the video) which
then initiates a hopping wave. In Figure 6, we have plot-
ted the position of the periodic center of mass for the
monolayer with Γ/kBT = 1.147, driven at rates below
F eff
max/Fmax = 0.9867. Using our analytical formula for

Feff(R), we found the corresponding value of R0 numeri-
cally and plotted it as the black dashed line in the graph.
Each of the monolayers oscillates for a while about R0

before creating a hopping wave, as predicted.

For the results presented in the article, we considered

Theory
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FIG. 5. Distribution of the average substrate forces for multi-
ple build up phases, gathered from 100 trajectories and several
values of the driving forces, as a function of R. The yellow
line indicates the theoretical prediction for Feff(R).
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FIG. 6. Periodic center of mass, R, as a function of time for
a monolayer driven by Fd/Fmax = 0.9847, 0.9856, and 0.9860,
all of which are less than Feff(Γ), where Γ/kBT = 1.147.
Dashed lines indicate theoretical predictions for the position
R0, at which the monolayers become pinned.

a total of 6 different values of Γ driven with 10 differ-
ent Fd. For each pair Γ and Fd values, 100 independent
trajectories were generated and analyzed.
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FIG. 7. Theoretical predictions for the effective force acting
on the monolayer as a function of the number particle number
N .

As described in the supplement S1, the effective force
acting on the monolayer,

Feff(R) = −Fmax sin

(

2πR

a

)

×exp

{

−
2π2

a2

[

σ2

x(R) +
1

3
σ2

y(R)

]}

, (1)

is a function of the variances,

σ2

µ(R) = δyµ
D̄
−1
yy (0, R)

Nβ
+

1

Nβ

∑

q 6=0

D̄
−1

µµ(q, R), (2)

which are sums of the elements of the dynamical matrix
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FIG. 8. Top: Average time the buildup phase plus the hop-
ping wave takes to travel through the system as a function of
driving force Fd for different system sizes N . Bottom: Aver-
age time the system takes to nucleate a hopping wave also as
a function of Fd and N . The dashed line is located at F eff

max.

D(q) divided by the particle number. These variances
can be interpreted as the mean value of the continuous

function D̄(q, R) discretized to N equally spaced points.
The number of particles in the system determines how
fine the “mesh” is. Naturally, the value of the variances
converges asN becomes large and in the limit of infinitely
large N , the sum over q becomes an integral. Accord-
ing to our formula, the continuous function D

−1
µµ(q, R)

has to be evaluated at the N q-vectors compatible with
a simulation of N particles. In order to trace the con-
vergence of the solution to an infinitely large system, we
have plotted, in Figure 7, our predictions for the effective
force acting on the monolayer. Evidently, we considered
a system size (indicated by a circle) which is quite close
to the limit of an infinitely large system.
As was stated in the paper, the entire trajectory of the

monolayer can be resolved into three times: the drifting
time due to the effective substrate t̃1, the nucleation time
τ , and the hopping wave time t̃2. The mean velocity
of the monolayer is exactly equal to γv = a/(t̃1 + t̃2 +
τ) = a/(t̃ + τ). The time t̃1, which is the time that the
monolayer needs to reach R0 if Fd < F eff

max or R = 0.25a if
Fd > F eff

max, can be calculated by evaluating the integral
using the appropriate limits of integration,

t̃1 =

∫

dR

Fd + Feff(R)
(3)

and is independent of N in the manner discussed above.
The hopping wave time is roughly t̃2 = a

√
N/vwave(Fd),

where vwave(Fd) is the velocity with which the radius of
the hopping wave expands and is expected to monotoni-
cally increase with the driving force. The dependance on
N stems from the fact that the hopping wave has to cover
larger distances as the system size increases. Finally, the
average nucleation time, τ is predicted to be proportional
to the inverse system size τ ∝ N−1 and scales exponen-
tially in the free energy barrier associated with forming a
critical cluster of hopping particles. This free energy bar-
rier, in turn, depends on Fd and is expected to vanish if it
exceeds Feff(R). Determining the exact functional form
of these three times would require the determination of a
series of proportionality terms, such as the kinetic pref-
actor, the surface tension due to a hopping wave, and the
hopping wave velocity. Although this is feasible, such a
detailed analysis is beyond the scope of this work and
would be tantamount to solving the entire model in this
parameter range. We are, nonetheless, able to make some
predictions.
As a result of the aforementioned considerations, the

mean velocity of the monolayer is predicted to scale very
differently with the driving force and system size in the
two dynamical regimes that were explored in this work.
Since τ is minuscule or 0 in the thermal sliding regime,
and most of the time is spent in the build up phase, t̃1
determines the mean velocity. As a result, the expression
γv =

√

(Fd)2 − (F eff
max)

2 is quite accurate in reproducing
the velocity of the monolayer. In the nucleation regime,
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the average nucleation time, τ , is the dominant time and
therefore the velocity of the monolayer increases with sys-
tem size and increases exponentially as Fd grows. In
both regimes, the time the hopping wave takes to travel
through the system scales with

√
N and Fd, but its con-

tribution to the velocity is small since the other two times
are much larger than t̃2. As a result we expect, that t̃

should increase slightly as the system size grows, whereas
the nucleation time τ should decrease by a large amount
for growing system sizes. Our expectations are confirmed
in Figure 8. Finally, from the shape of the curves, the
bottom panel also illustrates that the transition from nu-
cleation dynamics to thermal sliding is continuous.


