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S0: Details of Characterization 

Surface morphology and flake size was investigated using field emission scanning electron 

microscopy (FESEM). High resolution transmission electron microscopy (HR-TEM) images 

were taken using JOEL 2010F field-emission microscope at an accelerated voltage of 200 kV 

using a single tilt sample holder to observe the atomic structure of the hBN. The samples for 

TEM were prepared by suspending a low concentration of the hBN in ethanol and dropped on 

the Lacey carbon grids. X-ray photoelectron spectroscopy (XPS) measurements were performed 

immediately after the exfoliation in order to identify the elemental composition and bonding 

information in hBN. This was performed using XPS Kratos Ultra with an Al Kα micro-focused 

monochromatic source (1486.6 eV) and spot size of 400 µm at an operating pressure of 5*10-9 

Pa. Further spectroscopic evidence of the observed functionality was confirmed by using Fourier 

Transform InfraRed Spectroscopy (FTIR). This was performed on Bruker IFS 66/S microscope. 

The samples for FTIR were prepared by mixing 0.1 mg of hBN sample with 500 mg of KBr and 

was made into a pellet before the spectra was collected. This reduced the absorbance of the hBN 

sample. Crystallinity of the exfoliated hBN and the defect correlation can be made using X-ray 

diffraction (XRD) and Raman spectroscopy. Raman spectra were collected using a confocal 

WiTec α-200 Raman microscope with a 488 nm laser source (laser power: 25mW) and an 

integration time of 3 seconds. X-Ray diffraction specta were collected on Panalytical Xpert Pro 

MPD system with a spot size of 10 mm using a Cu Kα (8027 eV). The optical absorption of hBN 

was made using a Perkin-Elmer Lambda 950 UV-Vis-NIR spectrophotometer. The thicknesses 

of the samples were measured using Bruker Icon dimension. The samples for AFM were made 

by drop casting a drop of hBN in water on SiO2 substrate.  



 

The weight balance of hBN samples was made using a micro balance in a TGA. The sample 

weight after exfoliation was obtained by dispersing the exfoliated hBN in IPA or ethanol and 

drying it on aluminum boat. Typically, for about 1 gram of starting material, we get about 230-

250 mg of exfoliated hBN which is about 25% of the total weight. Depending on the temperature 

variations during the exfoliation process, the yield can go as low as 12%. So, it is really 

important to maintain the temperature closer to 75oC (reaction temperature). 

S1: Atomic Force Microscopy (AFM) 

The flake thicknesses of the exfoliated sheets were measured by AFM. The samples for AFM 

were prepared by drop casting the exfoliated hBN on Silicon wafer. This induced the flakes to 

stack on top of each other as it can be seen in figure S1. The two different spots that were 

analyzed shows that the flakes that are stacked are mono layer and bi layer materials. The 

thickness for these flakes were 0.413 nm and 0.837 nm, which are consistent with previously 

reported AFM thickness (0.4-0.5 nm for monolayer, 0.8-0.9 nm for bi layer and 1.2-1.3 nm for 

three layer system) of few layer hBN.1 
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As we can see from figure S6, there is a slight non-uniformity with boron-oxygen bonding that 

was collected on a different sample region. This could be because of the handling of the sample 

after the exfoliation process i.e., sampling drying environment and transfer of the sample after 

drying. These conditions might impact the functionalization of the hBN as it can be noticed from 

the XPS measurements. The individual elemental composition as obtained from the CASA is 

listed in table S4, which corresponds to Figure S4. We can clearly observe that there is a 

significant increase in the oxidation and addition of species such as Sulfur and Phosphorous in 

the exfoliated hBN. This indicates that the addition of the components have occurred during the 

exfoliation process. 

Table S5. Elemental composition of hBN as calculated using CASA XPS. 

Species hBN Before exfoliation (%) hBN After exfoliation (%) 

B 1s 33.69 30.6 

N 1s 30.39 19.56 

O 1s 4.14 29.16 

C 1s 31.75 13.95 

S 2p 0 2.21 

P 2p 0 4.49 
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