## Supporting Information

## Charge Separation in Facet Engineered Chalcogenide Photocatalyst: A Selective Photocorrosion Approach\*\*

Naixu Li,<sup>[a]</sup> Maochang Liu,<sup>[b]</sup> Zhaohui Zhou,<sup>[b]</sup> Jiancheng Zhou,<sup>\*[a]</sup> Yueming Sun,<sup>[a]</sup> and Liejin Guo<sup>\*[b]</sup>

- [a] Prof. J. Zhou, Prof. Y. Sun, N. Li
  School of Chemistry and Chemical Engineering
  Southeast University, Nanjing, Jiangsu, 211189 (P. R. China)
  E-mail: jczhou@seu.edu.cn
- [b] Prof. L. Guo, Dr. M. Liu, Dr. Z. Zhou International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (P. R. China) E-mail: lj-guo@mail.xjtu.edu.cn



*Figure S1.* A) XRD pattern, and B) UV-vis spectrum of  $Cu_2WS_4$  photocatalyst. Inset in (B) shows the photo of  $Cu_2WS_4$  powder. XRD pattern with dominating diffraction peaks of 002 and 101, to some degree, indicate an exposure of {001} and {101} facets. The band gap of the photocatalyst was calculated to be about 2.1 eV according to the Kubelka-Munk method from the UV-vis spectrum.<sup>[1,2]</sup>



*Figure S2.* A) TEM image viewed from [010] direction, and B) corresponding selected-area electron diffraction (SAED) pattern in the marked area.



*Figure S3*. Partial density of states (DOS) of S, W, and Cu on the (A-C) {001} and (E-F) {101} facets of *I*-Cu<sub>2</sub>WS<sub>4</sub>. This picture clearly shows the composition of the valence band and conduction band in Cu<sub>2</sub>WS<sub>4</sub>.



*Figure S4.* High-resolution XPS spectra of A) Pt and B) Ru of 5 wt%  $Pt/Cu_2WS_4$  and 5 wt%  $Ru/Cu_2WS_4$  photocatalysts. As indicated by the XPS analysis, Pt and Ru are mainly confirmed in their valence states of zero.<sup>[1]</sup>



Figure S5. Time-coursed photocatalytic hydrogen production over Cu<sub>2</sub>WS<sub>4</sub> decahedra with biggest {001} facets.



Figure S6. SEM image of recovered Pt-Cu<sub>2</sub>WS<sub>4</sub> sample after the reaction shown in Figure S5.

## References

[1] C. D. Wagner, Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in x-ray photoelectron spectroscopy, Physical Electronics Division, Perkin-Elmer Corp., **1979**.

[2] II Y. Kim, S. Atherton, E. S. Brigham, T. E. Mallouk, J. Phys. Chem. 1993, 97, 11802.