Electronic Supplementary Information Direct Formation of Small Cu₂O Nanocubes, Octahedra, and Octapods for Efficient Synthesis of Triazoles

Ya-Huei Tsai, Kaushik Chanda, Yi-Ting Chu, Chun-Ya Chiu, and Michael H. Huang*

Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan

Table S1Average particle sizes and relative standard deviations of the synthesizedCu₂O nanocrystals.

Sample	Morphology	Average Particle Size in Edge Length	Relative Standard Deviation
а	cubes	37 ± 4 nm	10%
b	octahedra	67 ± 7 nm	10%
с	octapods	135 ± 13 nm	9%

Fig. S1 Large-area SEM image of (a) Cu_2O octapods. (b–d) SEM images of a single Cu_2O octapod viewed along the (b) <100>, (c) <111>, and <110> directions. Scale bars are all equal to 100 nm.

Fig. S2 SEM images of the small Cu_2O (a, b) nanocubes, (c) cuboctahedra, (d) truncated octahedra, and (e) octahedra synthesized by adding (a) 0.1, (b) 0.2, (c) 0.8, (d) 1.8, and (e) 2.8 mL of 0.2 M N₂H₄ solution.

Fig. S3 XRD patterns of the small Cu₂O nanocrystals. A standard pattern is given.

Table S2Calculations for the determination of the volumes of concentratednanocrystal solutions needed to perform the cycloaddition reaction.Here slightlylarger edge lengths were assumed when doing the calculations.

		3	a
Morphology	Cube	Octahedron	Octapod
Edge length (nm)	40	68	140
Cu ₂ O particle weight in 1 mL solution (g)	0.00035	0.00060	0.00053
Volume of a single particle (cm ³)	a^3 = 6.40 × 10 ⁻¹⁷	$\frac{\frac{\sqrt{2}}{3}a^3}{=1.482\times10^{-16}}$	$a^{3} = 2.744 \times 10^{-15}$
Density of Cu ₂ O (g/cm ³)	6.0		
Weight of a particle (g)	3.84×10^{-16}	8.892×10^{-16}	1.646×10^{-14}
Number of particles per mL	9.11 × 10 ¹¹	6.75×10^{11}	3.22×10^{10}
Surface area of a single particle (cm ²)	$\frac{6a^2}{=9.60\times10^{-11}}$	$2\sqrt{3}a^2 = 1.601 \times 10^{-10}$	$\frac{6a^2}{=1.176\times10^{-9}}$
Total surface area in 1 mL solution (cm ²)	87	108	37.9
Volume needed for a total surface area of 87 cm ² (mL)	1.00	0.81	2.30

Fig. S4 SEM image of the Cu_2O octahedra after two cycles of cycloaddition reaction.

Spectral data of all synthesized compounds 3a-3c

1-Benzyl-4-phenyl-1*H*-1,2,3-triazole (3a)

¹H NMR (600 MHz, CDCl₃) δ 7.77 (dd, J = 8.2, 1.1 Hz, 2H), 7.63 (s, 1H), 7.38–7.35 (m, 5H), 7.29–7.28 (m, 3H), 5.56 (s, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 148.2, 134.7, 130.5, 129.1, 128.8, 128.1, 128.0, 125.7, 119.4, 54.2; MS (EI) *m/z*: 235 (M⁺).

(1-Benzyl-1*H*-1,2,3-triazol-4-yl)methanol (3b)

¹H NMR (600 MHz, CDCl₃) δ 7.43 (s, 1H), 7.31–7.29 (m, 3H), 7.20 (dd, *J* = 7.7, 1.8 Hz, 1H), 5.43 (s, 2H), 4.67 (s, 2H), 3.98 (brs, OH); ¹³C NMR (150 MHz, CDCl₃) δ 148.2, 134.5, 128.9, 128.6, 128.0, 121.8, 55.9, 54.0; MS (EI) *m/z*: 189 (M⁺).

1-Benzyl-4-(4-methoxyphenyl)-1*H*-1,2,3-triazole (3c)

¹H NMR (600 MHz, CDCl₃) δ 7.70 (dd, J = 6.8, 1.9 Hz, 2H), 7.56 (s, 1H), 7.36–7.33 (m, 3H), 7.29–7.27 (m, 2H), 6.90 (dd, J = 6.8, 1.9 Hz, 2H), 5.54 (s, 2H), 3.80 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.5, 148.0, 134.7, 129.0, 128.1, 128.0, 126.9, 123.1, 118.7, 114.3, 55.3, 54.2; MS (EI) *m/z*: 265 (M⁺).

¹H NMR and ¹³C NMR Spectra

¹H NMR spectra of Compound 3a in CDCl₃

¹³C NMR spectra of Compound 3a in CDCl₃

¹H NMR spectra of Compound 3b in CDCl₃

¹³C NMR spectra of Compound 3b in CDCl₃

¹H NMR spectra of Compound 3c in CDCl₃

¹³C NMR spectra of Compound 3c in CDCl₃