## *In situ* assembly of well-dispersed Ni nanoparticles on silica nanotubes and excellent catalytic activity in 4-nitrophenol reduction

Shenghuan Zhang,<sup>a</sup> Shili Gai,<sup>a</sup> Fei He,<sup>a</sup> Shujiang Ding<sup>\*b</sup>, Lei Li<sup>a</sup> and Piaoping Yang<sup>\*a</sup>

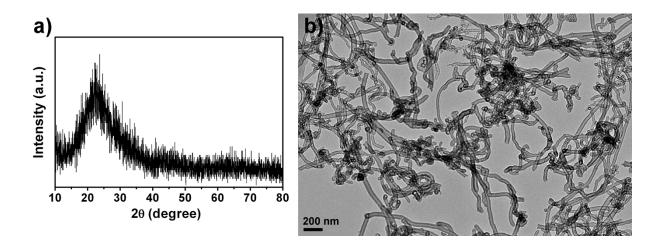



Fig. S1 XRD pattern and TEM image of SNTs after calcination at 800 °C for 8 h.

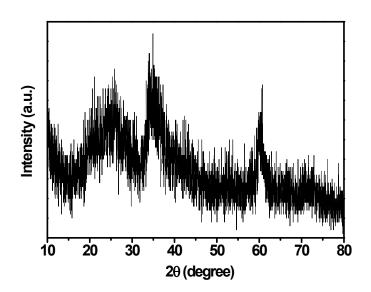



Fig. S2 XRD pattern of NiSNTs.

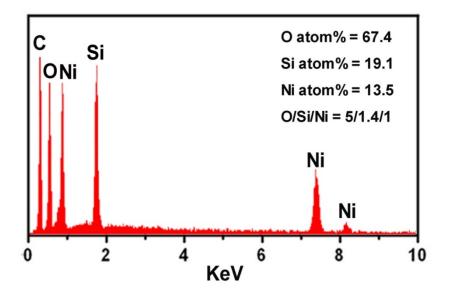



Fig. S3 EDS spectrum of NiSNTs.

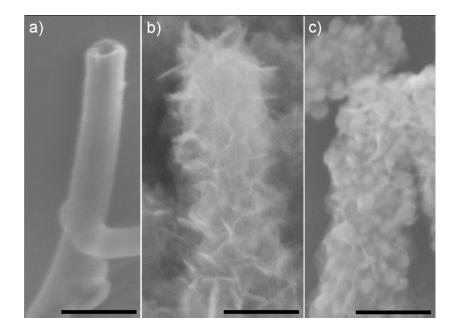



Fig. S4 SEM images of a single SNT (a), NiSNTs (b) and Ni/SNTs (c). The scale bar is 100 nm.

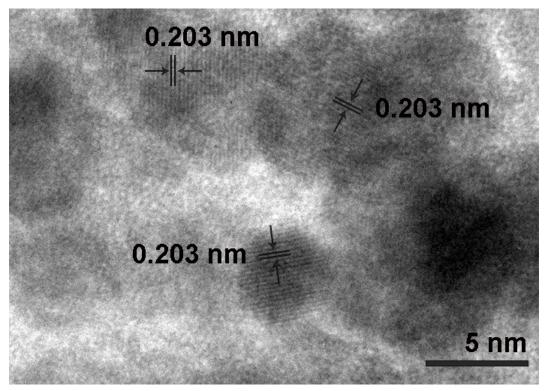



Fig. S5 Enlarged HRTEM of Ni/SNTs.

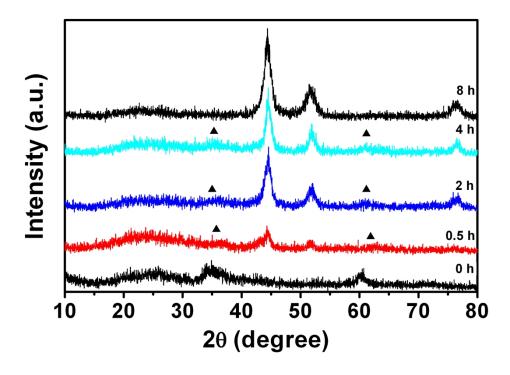
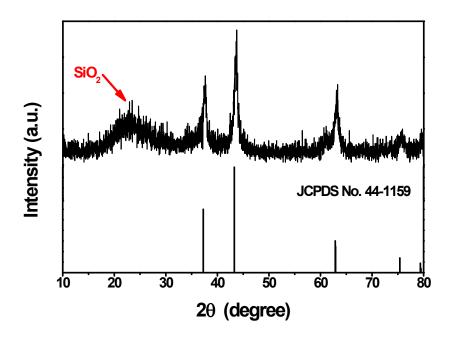
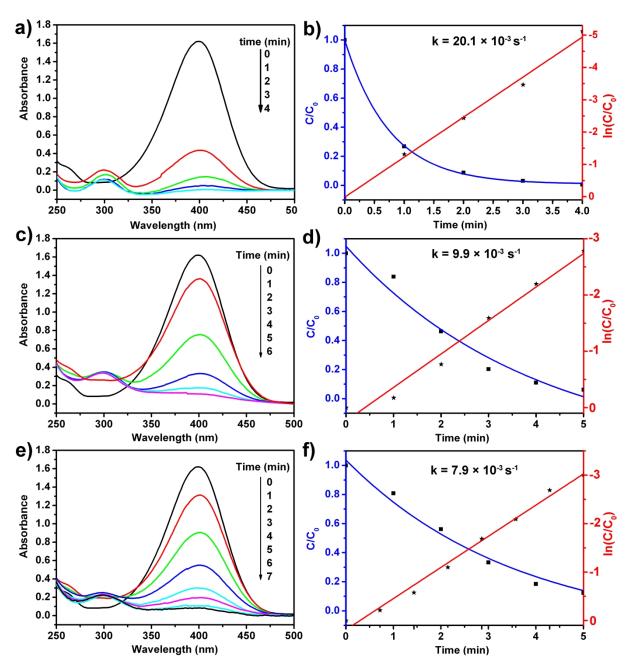
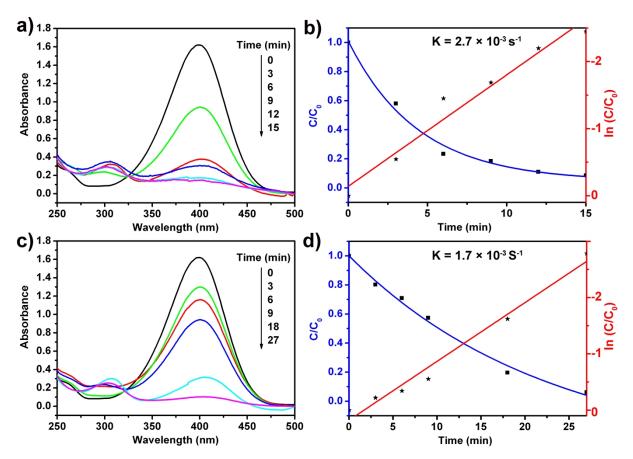
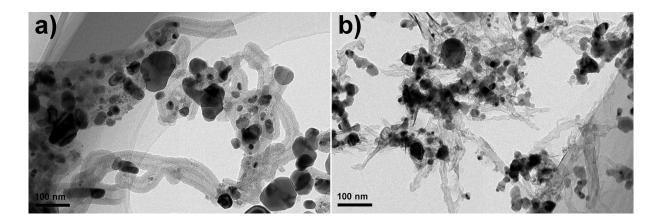



Fig. S6 XRD patterns of Ni/SNTs synthesized at 800 °C for different reaction time.



Fig. S7 XRD pattern of NiO/SNTs and the standard data of rhombohedral phased NiO.



**Fig. S8** UV-vis spectra of the catalytic reduction of 4-NP to 4-AP developed at different reaction times over Ni/SNTs catalysts synthesized by adding 0.5 mmol (a), 0.25 mmol (c), 0.1 mmol (e).  $C/C_0$  and  $ln(C/C_0)$  versus time for the reduction of 4-NP over Ni/SNTs catalysts synthesized by adding 0.5 mmol (b), 0.25 mmol (d), 0.1 mmol (f)., the ratio of 4-NP concentration (Ct at time t) to its initial value  $C_0$  is directly represented by the relative intensity of the respective absorption peak at 400 nm.



**Fig. S9** UV-vis spectra of the catalytic reduction of 4-NP to 4-AP developed at different reaction times over Ni/SNTs catalysts synthesized by wet impregnation (a) and Ni/CNTs (c);  $C/C_0$  and  $ln(C/C_0)$  versus time for the reduction of 4-NP over Ni/SNTs catalysts synthesized by wet impregnation (b) and Ni/CNTs (d), the ratio of 4-NP concentration (Ct at time t) to its initial value  $C_0$  is directly represented by the relative intensity of the respective absorption peak at 400 nm.



**Fig. S10** TEM images of Ni/SNTs synthesized by the wet impregnation method (a) and Ni/CNTs (b).

| Samples              | Ni/SNTs | Ni/SNTs | Ni/SNTs | Ni/SNTs | Ni/SNTs       | Ni/CNTs |
|----------------------|---------|---------|---------|---------|---------------|---------|
| (NiCl <sub>2</sub> ) | (0.1    | (0.25   | (0.5    | (0.75   | (wet          |         |
|                      | mmol)   | mmol)   | mmol)   | mmol)   | impregnation) |         |
|                      |         |         |         |         |               |         |

**Table S1** ICP data of Ni/SNTs synthesized by adding 0.1 mmol, 0.25 mmol, 0.5 mmol, 0.75mmol NiCl2 and Ni/SNTs synthesized by wet impregnation method and Ni/CNTs

**Table S2** BET surface area, average pore diameter and total volume of Ni/SNTs synthesized by adding 0.1 mmol, 0.25 mmol, 0.5 mmol, 0.75 mmol NiCl<sub>2</sub> and Ni/SNTs synthesized by wet impregnation method

| Samples (NiCl <sub>2</sub> ) | $S_{ m BET}$ | D    | V <sub>P</sub> |
|------------------------------|--------------|------|----------------|
|                              | $(m^{2}/g)$  | (nm) | $(cm^{3}/g)$   |
| Ni/SNTs (0.1 mmol)           | 123          | 11.2 | 0.34           |
| Ni/SNTs (0.25 mmol)          | 193          | 14.7 | 0.66           |
| Ni/SNTs (0.5 mmol)           | 201          | 19.6 | 0.86           |
| Ni/SNTs (0.75 mmol)          | 416          | 9.42 | 0.89           |
| Ni/SNTs (wet impregnation)   | 142          | 6.7  | 0.18           |

<sup>\*</sup>S<sub>BET</sub>, the BET specific surface area calculated in the relative pressures range from 0.05 to 0.2; *D*, the average diameter of mesopores calculated by the BJH method;  $V_{\rm p}$ , the total pore volume calculated at the relative pressure of about 0.95.