Supporting Information Available

Seed-assisted synthesis of Pd@Au core-shell nanotetrapods and their optical and catalytic properties

Ruopeng Zhao,^b Mingxing Gong,^b Huiming Zhu,^b Yu Chen,^{*a,b} Yawen Tang,^{*b} and Tianhong Lu^b

^a School of Materials Science and Engineering, Shaanxi Normal University, Xi'an

710062, PR China

E-mail: ndchenyu@gmail.com (Y. Chen)

^b Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation

Centre of Biomedical Functional Materials, School of Chemistry and Materials

Science, Nanjing Normal University, Nanjing 210023, PR China

E-mail: tangyawen@njnu.edu.cn (Y. Tang)

Experimental data

Figure S1. UV-vis absorption spectra for the reduction of methylene blue (MB) with NaBH₄ using (A) Pd@Au CSNTPs and (B) as-prepared Au nanoparticles as catalysts at 1 min intervals; The relationship between $ln(C_t/C_0)$ and reaction time (t) using (C) Pd@Au CSNTPs and (D) as-prepared Au nanoparticles as catalysts, where in the ratio of the MB concentration (C_t at time t) to its initial value C₀ was directly given by the relative intensity of the respective absorbance A_t/A_0 .