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1. Methods   

1.1 Materials.  The DNA oligonucleotides used in System I and System II were purchased from 

Integrated DNA technologies (IDT).  The DNA oligonucleotides used in System III were 

purchased from Biosearch Technologies, Inc. (Novato, CA, USA).  DNA modified with dye and 

quencher were purified by HPLC, and others were purified by PAGE process.  The DNA 

sequences are listed in Supplementary Table S1(5).  Mfold was used to calculate the standard 

free energies of the DNA strands and complexes.  Methanol, ethanol, glycol, glycerin and 

glucose and all other chemicals were of reagent grade or better and used as received.  If not 

stated otherwise, the reaction buffer contains: 10 mM phosphate, 150 mM NaCl, 1 mM EDTA, 

and pH 7.2.   

 

1.2 Fluorescence measurements.  Fluorescence (Varian Cary Eclipse Fluorimeter, Varian, Inc.) 

was measured with a Peltier block, using quartz fluorescence cuvettes (4×10 mm; Sub-micro, 50 

μl), and with the following settings: λex = 556 nm, λem = 581 nm, 5 nm slit, PMT detector voltage 

= 760V. For the preparation of left or right arm labeled MP complex, stoichiometric amounts of 

5’-TAMRA labeled P and 3’-Iowa Black labeled M strands were added to the reaction buffer to 

give a final concentration of 500 nM for each strand.  The resulting solutions were heated to 90o 

C for 5 min, and subsequently cooled to room temperature.  Fluorescence measurements as a 

function of time were carried out by using the Varian Cary Eclipse Fluorimeter equipped with a 

temperature controller.  The excitation wavelength was fixed at 556 nm, and the emission signal 

passing through a 581 nm filter was recorded by a fluorescence detector.  In a typical test, 100 

μL MP solution was added in a cuvette, and 1 μL of corresponding concentration of strand M’ (if 

not stated otherwise, the final concentration is 1.75 μM) was added and mixed quickly within 20 s 

to initiate the reaction.   

 

1.3 Surface Electro-chemistry Experiments.  SM and SP were prepared using a 

well-established procedure described by Xiao et al.23  In brief, prior to sensor fabrication, gold 

disk electrodes (2 mm diameter, CH Instruments, Austin, TX) were cleaned both mechanically (by 

polishing with diamond and alumina oxide slurries organic polar solvent assisted, 

successively) and electrochemically (through successive scans in sulfuric acid solutions) as 

previously described (40).  The linear probe DNA was reduced for 1 hour at room temperature in 

the dark in 10 mM tris(2-carboxyethyl) phosphine hydrochloride (Molecular Probes, Carlsbad, CA) 

and then diluted to a final concentration of 1.0 μM in HEPES/NaClO4 buffer (10 mM HEPES and 

0.5 M NaClO4, pH 7.0, as was used in all the experiments surface electro-chemistry experiments 

unless otherwise noted.  The gold electrodes were incubated in this solution for 1 hour at room 

temperature in the dark, rinsed with distilled, deionized (DI) water, and then incubated in 3 mM 

6-mercapto-1-hexanol in DI water for 30 min.  Following this, the electrodes were rinsed in DI 

water and stored in HEPES/NaClO4 buffer for future use.  Fabricated SM/SP were interrogated 
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using square wave voltammetry (SWV) with a 50 mV amplitude signal at a frequency of 60 Hz, in 

the absence and presence of SM’ (2 μM).  Signal gain was computed by the relative change in 

SWV peak currents with respect to background current.  
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Table S1. DNA sequences used in this work   

Experiment in solution: 

5’-3’ 
M with quencher: 

CTGGAA TCGTCGTTTACGGTC CACACAGTAGATCAGAATTGGCACGTTCGCTCGCTAGGTT GAAGTCACCCTCATT –Q 

P with dye: 

F-AATGAGGGTGACTTC GACCGTAAACGACGA 

M’: 

AATGAGGGTGACTTC AACCTAGCGAGCGAACGTGCCAATTCTGATCTACTGTGTG GACCGTAAACGACGA 

P’: 

TCGTCGTTTACGGTC GAAGTCACCCTCATT 

M’ with dye: 

F-AATGAGGGTGACTTC AACCTAGCGAGCGAACGTGCCAATTCTGATCTACTGTGTG GACCGTAAACGACGA 

 

The sequences for strands listed above are the same as in previous work.1 

 

Experiment on electrode: 

5’-3’ 
SP: 

TTTTTTTTTTTTTTTGCATCCACTCATTCAATACC-MB 

SM’: 

CACTCATTCAATACCCTACGTC    

SM: 

SH-GACGTAGGGTATTGAATGAGTGGATGC 

 

F: TAMRA 

Q: Iowa Black   

MB: Methylene Blue   
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Text S1. Calculation of thermodynamic parameters.   

Consider the general equilibrium shown below for the association of DNA sequences 

in our work to form a duplex structure.   

M + P ↔ MP          (1) 

M + M’ ↔ MM’          (2) 

The general expression for the corresponding equilibrium constant K is ((1) as an 

example)  

ܭ																																	 ൌ
ሾ୑୔ሿ

ሾ୑ሿሾ୔ሿ
          (3) 

 

We now have an expression for the equilibrium constant in terms of experimentally 

accessible parameters (concentrations).  If we define the melting temperature Tm, as 

the temperature at which [MP] is 0.5[P] (since [M] ≥ [P]), then the general expression 

for the equilibrium constant shown in Eq (3) reduces to 

 

ܭ																											
೘்
ൌ

଴.ହሾ୔ሿబ
ሺሾ୑ሿబି଴.ହሾ୔ሿబሻ଴.ହሾ୔ሿబ

ൌ
ଵ

ሺሾ୑ሿబି଴.ହሾ୔ሿబሻ
    (4) 

 

Since, for any process at equilibrium, ΔG0 = -RT ln Keq and ΔG0 =ΔH0 -TΔS0, we can 

derive an expression for Keq in terms of ΔH0 and ΔS0 by equating these two 

expressions forΔG0 to yield 

 

-RT ln K =ΔH0 -TΔS0        (5) 
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Equation (4) provides us with an expression for K at Tm in terms of [M]0 and [P]0 (the 

original concentrations) when double strands associate.  Plugging this expression 

into the equality given above yields 

 

+ RTm ln ([M]0 – 0.5[P]0) = ΔH0 – TmΔS0       (6) 

 

Dividing by Tm and rearranging the terms yields 

 

R ln ([M]0 – 0.5[P]0) = ∆ܪ଴ ଵ

೘்
	െ         (7)	଴ܵ߂	

                  (Y)        (a)  (X)  (b) 
 

As emphasized by the symbols in parentheses, this equation corresponds to a straight 

line when R ln ([M]0 – 0.5[P]0) is plotted against the reciprocal of the melting 

temperature (1 / Tm).  The slope (a) of such a plot is equal toΔH0 and the intercept (b) 

is equal to -ΔS0.  Figure S13 shows a typical R ln ([M]0 – 0.5[P]0) vs (1 / Tm) plot in 

which these features are emphasized.   

From Figure S13, we could know the (ΔH0) and (ΔS0), and we could get the following 

Table S3.   

Since the single-stranded state for M’ and P is random coil state, their ΔG is 

considered to be 0.  We therefore have Figure S14, which shows the initiate state and 

final state of DNA Strand Displacement Reaction.   
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Table S2. ΔH 0, ΔS 0, and ΔG (at 25o C)   

 

 

Category ΔH 0 / kcal mol-1 ΔS 0 / cal mol-1 k-1 ΔG / kcal mol-1 

MM’ in buffer 279.8 733.3 -61.4 

MM’ in ethanol 206.1 550.5 -42.1 

MP in buffer 151.0 410.8 -28.8 

MP in ethanol 134.8 372 -23.9 

 

Table S2. To calculate ΔG difference of M/P and M/M' in solvent (e.g. 20% ethanol) 

from those in aqueous buffer, we measured Tm in solvent and buffer system with 

various M/P and M' concentrations.  Then we plotted R ln ([M]0 - 0.5[P]0) against 

the reciprocal of the melting temperature (1 / Tm) to get (ΔH0) and (ΔS0) to calculate 

ΔG.   
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Table S3. Displacement ratio of System I in 60s, 300s, and 600s in 

alcohols                

 

Category Buffer 
30% 

Methanol 

30% 

Ethanol 

30% 

Glycol 

DR in 60s 9% 37% 57% 62% 

DR in 300s 22% 48% 72% 76% 

DR in 600s 31% 57% 73% 77% 

 

Table S3. DSDR in System I in buffer and different polar solvents.  DSDR in buffer 

solution completes only 9% in 60 seconds, 22% in 300 seconds, and 31% in 600 

seconds.  DSDR in 30% methanol, ethanol, and glycol solutions completes 37%, 

57%, and 62% replacement reactions, respectively, in first 60 seconds, which 

indicates the polar solvent/buffer (glucose/buffer) co-solvents highly increased the 

displacement ratio in the very beginning of DSDR.   
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Table S4. Displacement ratio of System II in 60s, 300s, and 600s in 

alcohols         

 

 

Category Buffer  
20% 

Ethanol 

DR in 60s 10%  30% 

DR in 300s 20%  64% 

DR in 600s 42%  70% 

 

 

Table S4. DSDR in System II in buffer and Ethanol solvents.  DSDR in buffer 

solution completes only 10% in 60 seconds, 20% in 300 seconds, and 42% in 600 

seconds.  DSDR in 20% Ethanol solution completes 70% replacement reactions in 

the first 600 seconds which indicates the alcohol/buffer co-solvents highly increased 

the displacement ratio of DSDR on the surface.   
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Figure S11. DSDR in buffer at various temperatures 

 

 

 

Figure S11. a, Fluorescence spectroscopy test of DSDR in buffer solution at different 

temperatures.  MP in solution (100 μL, 500 nM) is placed in a cuvette, and strand M’ 

(1 μL) is added and mixed quickly to initiate the DSDR.  The final concentration of 

strand M’ is 1.75 μM (1: 3.5) at 25o C, 35o C and 45o C, respectively.  b, is the K 

constant for DSDR in buffer between M’ and MP at 25o C, 35o C, and 45o C, 

respectively.   
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Figure S12. DSDR in 20% ethanol at various temperatures   

 

 

Figure S12. a, Fluorescence spectroscopy test of DSDR in 20% Ethanol solution at 

different temperatures.  MP in solution (100 μL, 500 nM) is placed in a cuvette, and 

strand M’ (1 μL) is added and mixed quickly to initiate the DSDR.  The final 

concentration of strand M’ is 1.75 μM (1 : 3.5) at 15o C, 25o C, and 35o C, respectively.  

b, is the rate constant for DSDR in 20% ethanol solution between M’ and MP at 15o C, 

25o C, and 35o C, respectively.  
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Figure S13. Arrhenius Plots            

 

 

 

∆Ea = Ea buffer – Ea 20%Ethanol = 21.9 kJ/mol   

 

Figure S13. Arrhenius plots for strand exchange reaction in 20% ethanol or buffer. 

Values of activation energies (Ea) calculated from the Arrhenius plots are shown 

above.   

  



S25 
 

Table S5. t1/2 in System II           

 

 

 20%  

BUFFER 1000 s 

Ethanol  85 s  

 

Table S5. t1/2 of DSDR on surface in buffer is 1000 seconds.  t1/2 of 20% ethanol is 

only 85 seconds in System II.  These experiments demonstrate that our organic polar 

solvent assisting strategy not only works in solution but also on surface.   


