Electronic Supplementary Information (ESI)

Figure S1. Length of the grown ITO NWs as a function of the consumed source amount. The x-i ntercept of the extrapolated line is attributed to a loss of source by evaporation during heating up to 600°C. Inset shows the length of ITO NWs as a function of reaction time.

Figure S2. XRD pattern of the bare ITO substrate (ITO thin film on glass) and the grown NWs o n the ITO substrate. All the peaks correspond to the peaks for cubic In_2O_3 shown in JCPDS Card No. 06-0416.

Figure S3. EDS line scan results (red: In, green: Sn, blue: O, and cyan: Au) of the (a) tip and (b) body of a NW, and the corresponding composition tables (c and d), respectively.

Figure S4. Cross-sectional SEM image of an ITO NW array grown without Au seeds for 30 min. All the other growth conditions are identical to the conditions for Au seed layer-mediated growth.

Figure S5. The thickness of the TiO_2 nanoshell versus the number of ALD cycles. The insets sho w the TEM images of the TiO_2 nanoshell coated ITO NW (scale bar: 100 nm).

Figure S6. *J-V* curves of the TiO_2/ITO NW-based photoelectrodes, under 100 mW/cm² (Xe lam p) of light illumination.

Figure S7. *J-V* curves of the TiO₂ NP (P25) film-based photoelectrodes, under 100 mW/cm² (Xe lamp) of light illumination.

Figure S8. (a) O 1s XPS peaks of the ITO NW and (b) *J-V* curves for the H₂-annealed photoano des (20 nm-thick TiO_2/ITO NW).

Figure S9. (a) XRD pattern and (b) HRTEM image of the CdS/CdSe crystallites coated on the surface of TiO₂ nanoshell.