Atomic Layer Deposition of MoS₂ film

Lee Kheng Tan,[‡]^{ab} Bo Liu,[‡]^c Jing Hua Teng,^b Shifeng Guo,^b Hong Yee Low,^d and Kian Ping Loh^{*}^a

^a Department of Chemistry and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore 117543

^bA*STAR, Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602

^c Department of Physics and Graphene Research Centre, National University of Singapore 2 Science Drive 3, Singapore 117551

^d Singapore University of Technology and Design, 20 Dover Dr, Singapore 138682

‡These authors contributed equally.

Figure S2. TEM image of MoS_2 film deposited by 10 ALD cycles on sapphire substrate. It depicts a continuous MoS_2 film of ~1.7 nm thickness on the substrate.

Figure S3. PL spectrum of annealed, 10 and 20 ALD cycles-deposited MoS_2 film transferred on SiO_2/Si substrate. It shows similar optical characteristics as MoS_2 film on sapphire. PL spectrum of a typical CVD grown sample is also included as a reference.

Figure S4. Relationship between the number of ALD cycles and thickness of MoS_2 film, as measured by AFM and TEM.

Figure S5. AFM images and height profile for 20 ALD-cycle deposited MoS₂ film cycles after annealing.

