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Figure S1. (a) TEM and (b) SEM images of the as-prepared mono/few layer WS2 

nanosheets with different magnification.

 



Figure S2. Photographs of WS2 bulk dispersed in DI water (i), WS2 nanosheets 

dispersed in DI water (ii), WS2 nanosheets dispersed in PBS solution (iii) and BSA-

WS2 dispersed in PBS solution (iv). 



Figure S3. The energy-dispersive X-ray (EDS) spectra of the mono and few layer 

WS2 nanosheets..



Figure S4. Raman spectra of the commercial WS2 and obtained WS2  nanosheets. 
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Figure S5. Photothermal stability test of the mono and few layer WS2 nanosheets 

under 808-nm laser (1W/cm2) irradiation for different times, which show evidently 

photothermal stability when exposed to the 808-nm laser even for 1 h.
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Figure S6. UV-Vis absorption spectra of MB before and after loaded on the mono 

and few layer WS2 nanosheets.
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Figure S7. Fluorescence emission spectra of BSA-WS2@MB in SOSG solution with 

the increase of the laser irradiation time.
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Figure S8. UV-Vis absorption spectra of WS2 at the concentration of 50 μg/ mL.
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Figure S9. The temperature evaluation of WS2 nanosheets solution (50ug/mL) as a 

functional of irradiation time (0-10 min) of 665nm LED (50mW/cm2).
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 Figure S10. Cell viability of HeLa cells incubated with BSA-WS2@MB, BSA-

WS2+MB and free MB irradiated by the 665 nm LED (0.05W/cm2, 5 min). 



Figure S11.Calculation of photothermal conversion efficiency.

Based on Roper’s report, the total energy balance for the system can be expressed by 

Eq.1:
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Where Cp and m are heat capacity and the mass of water, respectively, T is the 

solution of temperature, QNC is the energy inputted by the mono and few layer WS2 

nanosheet, QDis is the baseline energy inputted by the sample cell, and the QSurr is the 

heat conduction away from the system surface by air.

The laser-induced source term of QNC represents heat dissipated by electron-phonon 

relaxation of the plasmons on the WS2 nanosheet surface under the irradiation of 808 

nm laser:

                                                         QNC=I (1-10-A808) η                                             (2)

Where I is incident laser power, η is the conversion efficiency, and A808 is the 

absorbance of the mono and few layer WS2 nanosheets at wavelength of 808 nm. In 

addition, the term of QDis presents heat dissipated from light absorbed by the sample 

cell itself ,  and it was measured using adquartz cuvette cell containing pure water 

without the mono and few layer WS2 nanosheets. Furthermore, QSurr is linear with 

temperature for the outgoing thermal energy, as given by Eq 3:

                                                          QSurr = (T- T surr)                                             hs

(3)

Where h is heat transfer coefficient, S is the surface area of the container, and TSurr is 

the ambient temperature of the surroundings.

Once the laser power is defined, the heat input (QNC+QDis) will be finite. Since the 

QSurr is increased with the increase of the temperature according to the Eq3, the 

system temperature will rise to a maximum when the heat input is equal to heat 

output:



QNC+QDis= QSurr-Max= hs (TMax- T surr)                           

(4)

As the sample cell reaches the equilibrium temperature, the QSurr-Max is heat 

conduction away from the system surface by air, and TMax is the equilibrium 

temperature. The 808 nm laser heat conversion efficiency (η) can be determined by 

substituting Eq 2 for QNC into Eq 4 and rearranging to get 
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Where QDis was measured to be 55.6 mW, the (TMax- T surr) was 18.435 OC according 

to figure 2c, I is 2 mW/cm2, A808 is the absorbance (0.306) of the mono and few layer 

WS2 nanosheets at 808 nm (Figure S7). Thus, In order to calculate η, the hS is needed 

to be known.

In order to calculate the hS, dimensionless driving force temperature, θ is introduced 

serving the maximum system temperature, TMax
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Which is substituted into Eq1 and obtained the Eq8
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At the cooling stage of the aqueous dispersion of the mono and few layer WS2 

nanosheets, the light source was shut off, the QNC+QDis=0, yielding the Eq. 9
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And then rearranging, giving the Eq. 10

                                                 lnst   

(10)

Therefore, time constant for heat transfer from the system is calculated to be 199.7891 

s by applying the linear time data from the cooling period (after 780 s) vs negative 

natural logarithm of driving force temperature (figured 2d). In addition, the m is 1.0 g 

and the C is 4.2 J/g. Thus, according to Eq.7 the  is deduced to be 18.435 mW/oC, hs

substituting 18.435 mW/oC to Eq. 5, the 808 nm laser heat Conversion efficiency (η) 

of the mono and few layer WS2 nanosheets can be calculated to be 32.83%.


