Supporting Information

Yuan Yong^a, Liangjun Zhou^{ac}, Zhanjun Gu^a, Liang Yan^a, Gan Tian^{ad}, Xiaopeng Zheng^{ac}, Xiaodong Liu^e, Xiao Zhang^{ab}, Junxin Shi^{af}, Wenshu Cong^a, Wenyan Yin^a, Yuliang Zhao^{ab}

^aKey Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R.China.

^bKey Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanosciences and Technology of China, Beijing, 100190, P. R. China.

^cCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

^d College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China

^eCollege of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China.

^fDepartment of Material Physics &. Chemistry, College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China.

*Correspondence: <u>zigu@ihep.ac.cn</u>, zhaoyuliang@ihep.ac.cn

[§] These authors contributed equally.

Figure S1. (a) TEM and (b) SEM images of the as-prepared mono/few layer WS_2 nanosheets with different magnification.

Figure S2. Photographs of WS_2 bulk dispersed in DI water (i), WS_2 nanosheets dispersed in DI water (ii), WS_2 nanosheets dispersed in PBS solution (iii) and BSA- WS_2 dispersed in PBS solution (iv).

Figure S3. The energy-dispersive X-ray (EDS) spectra of the mono and few layer WS_2 nanosheets..

Figure S4. Raman spectra of the commercial WS_2 and obtained WS_2 nanosheets.

Figure S5. Photothermal stability test of the mono and few layer WS_2 nanosheets under 808-nm laser (1W/cm²) irradiation for different times, which show evidently photothermal stability when exposed to the 808-nm laser even for 1 h.

Figure S6. UV-Vis absorption spectra of MB before and after loaded on the mono and few layer WS_2 nanosheets.

Figure S7. Fluorescence emission spectra of BSA-WS₂@MB in SOSG solution with the increase of the laser irradiation time.

Figure S8. UV-Vis absorption spectra of WS₂ at the concentration of 50 μ g/ mL.

Figure S9. The temperature evaluation of WS_2 nanosheets solution (50ug/mL) as a functional of irradiation time (0-10 min) of 665nm LED (50mW/cm²).

Figure S10. Cell viability of HeLa cells incubated with BSA-WS₂@MB, BSA-WS₂+MB and free MB irradiated by the 665 nm LED ($0.05W/cm^2$, 5 min).

Figure S11.Calculation of photothermal conversion efficiency.

Based on Roper's report, the total energy balance for the system can be expressed by Eq.1:

$$\frac{\sum_{i} m_{i}C_{p,i}dT}{dt} = Q_{NC} + Q_{Dis} - Q_{Surr}$$
(1)

Where C_p and m are heat capacity and the mass of water, respectively, T is the solution of temperature, Q_{NC} is the energy inputted by the mono and few layer WS₂ nanosheet, Q_{Dis} is the baseline energy inputted by the sample cell, and the Q_{Surr} is the heat conduction away from the system surface by air.

The laser-induced source term of Q_{NC} represents heat dissipated by electron-phonon relaxation of the plasmons on the WS2 nanosheet surface under the irradiation of 808 nm laser:

$$Q_{NC} = I (1 - 10^{-A808}) \eta$$
 (2)

Where *I* is incident laser power, η is the conversion efficiency, and A_{808} is the absorbance of the mono and few layer WS₂ nanosheets at wavelength of 808 nm. In addition, the term of Q_{Dis} presents heat dissipated from light absorbed by the sample cell itself, and it was measured using adquartz cuvette cell containing pure water without the mono and few layer WS₂ nanosheets. Furthermore, Q_{Surr} is linear with temperature for the outgoing thermal energy, as given by Eq 3:

$$Q_{Surr} = hs (T - T_{surr})$$

(3)

Where h is heat transfer coefficient, S is the surface area of the container, and T_{Surr} is the ambient temperature of the surroundings.

Once the laser power is defined, the heat input $(Q_{NC}+Q_{Dis})$ will be finite. Since the Q_{Surr} is increased with the increase of the temperature according to the Eq3, the system temperature will rise to a maximum when the heat input is equal to heat output:

$$Q_{NC}+Q_{Dis}=$$
 $Q_{Surr-Max}=$ hs $(T_{Max}-T_{surr})$

(4)

As the sample cell reaches the equilibrium temperature, the $Q_{Surr-Max}$ is heat conduction away from the system surface by air, and T_{Max} is the equilibrium temperature. The 808 nm laser heat conversion efficiency (η) can be determined by substituting Eq 2 for Q_{NC} into Eq 4 and rearranging to get

$$\eta = \frac{hs(T - Tsurr) - Q_{Dis}}{I(1 - 10^{-.4808})}$$
(5)

Where Q_{Dis} was measured to be 55.6 mW, the $(T_{Max}-T_{surr})$ was 18.435 °C according to figure 2c, *I* is 2 mW/cm², A_{808} is the absorbance (0.306) of the mono and few layer WS₂ nanosheets at 808 nm (Figure S7). Thus, In order to calculate η , the hS is needed to be known.

In order to calculate the hS, dimensionless driving force temperature, θ is introduced serving the maximum system temperature, T_{Max}

$$\theta = \frac{T - T_{surr}}{T_{Max} - T_{surr}}$$

(6)

And the τ_s

$$\tau_s = \frac{\sum_i m_i C_{p,i}}{hs}$$

(7)

Which is substituted into Eq1 and obtained the Eq8

$$\frac{d\theta}{dt} = \frac{1}{\tau_s} \left[\frac{Q_{NC} + Q_{Dis}}{hs \left(T_{Max} - T_{surr} \right)} - \theta \right]$$

(8)

At the cooling stage of the aqueous dispersion of the mono and few layer WS_2 nanosheets, the light source was shut off, the $Q_{NC}+Q_{Dis}=0$, yielding the Eq. 9

$$d_t = -\tau_s \frac{d\theta}{\theta}$$

(9)

And then rearranging, giving the Eq. 10

 $t = -\tau_{s} \ln \theta$

(10)

Therefore, time constant for heat transfer from the system is calculated to be 199.7891 s by applying the linear time data from the cooling period (after 780 s) *vs* negative natural logarithm of driving force temperature (figured 2d). In addition, the m is 1.0 g and the C is 4.2 J/g. Thus, according to Eq.7 the *hs* is deduced to be 18.435 mW/°C, substituting 18.435 mW/°C to Eq. 5, the 808 nm laser heat Conversion efficiency (η) of the mono and few layer WS₂ nanosheets can be calculated to be 32.83%.