Electronic supplementary information

Generic Phosphatase Activity Detection using Zinc Mediated Aggregation Modulation of Polypeptide-Modified Gold Nanoparticles

Robert Selegård, Karin Enander, Daniel Aili*

Division of Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-583 36 Linköping, Sweden E-mail: daniel.aili@liu.se

Figure S1. Change in LSPR peak position of JR2EC-AuNPs as a function of $[Zn^{2+}]$ (black), $[P_i]$ and 2 mM Zn²⁺ (blue) and concentration of non-complexed Zn²⁺ ($[Zn^{2+}]_{free}$) after addition of P_i (orange). $[Zn^{2+}]_{free}$ was calculated assuming 100% complex formation and a Zn²⁺:P_i ratio of 3:2. The relative shift of this curve (orange) compared to the Zn²⁺ response in the absence of P_i (black) indicates formation of ternary complexes between Zn²⁺, JR2EC and P_i that interfere with polypeptide dimerization and prevent nanoparticle aggregation, in addition to the reduction in $[Zn^{2+}]$ because of formation of Zn₃PO₄.^[1]

Figure S2. Change in LSPR peak position of JR2EC-AuNPs as a function of [ADP] (•), [AMP] (•), [adenosine] (•) and [GMP] (\Box) in a 30 mM Bis-Tris buffer (pH 7) containing 2 mM Zn²⁺. Lines were where obtained by fitting data to a Hill equation.

Figure S3. UV-vis spectra of JR2EC-AuNPs exposed to 2 mM Zn²⁺ (black), 2 mM Zn²⁺ and 100 μ M ATP (green), 2 mM Zn²⁺ and 2 μ M ALP (orange) and 2 mM Zn²⁺, 100 μ M ATP and 10 nM ALP incubated for 30 min at 37 °C (red). All samples were treated with 1 mM Mg²⁺ in Tris buffer (50 mM, pH 9) prior to dilution with Zn²⁺ and JR2EC-AuNPs giving a final concentration of 50 μ M Mg²⁺.

Figure S4. UV-vis spectra of JR2EC-AuNPs exposed to 2 mM Zn²⁺ (black), 2 mM Zn²⁺ and 175 μ M PP_i (red), 2 mM Zn²⁺ and 56 nM PPase (orange) and 2 mM Zn²⁺, 175 μ M PP_i and 56 nM PPase incubated for 10 min at 30 °C (blue). All samples were treated with 1 mM Mg²⁺ in Tris buffer (50 mM, pH 7,2) prior to dilution with Zn²⁺ and JR2EC-AuNPs giving a final concentration of 50 μ M Mg²⁺.

Figure S5. a) UV-vis spectra of JR2EC-AuNPs exposed to 2 mM Zn²⁺ (black), 2 mM Zn²⁺ and 250 μ M ATP (orange), 2 mM Zn²⁺ and 68 nM apyrase (red) and 2 mM Zn²⁺, 250 μ M ATP and 68 nM Apyrase incubated for 2.5 h at 30 °C (green). All samples were treated with 5 mM Ca²⁺ in Mes buffer (50 mM, pH 6) prior to dilution with Zn²⁺ and JR2EC-AuNPs giving a final concentration of 250 μ M Ca²⁺. b) UV-vis spectra of JR2EC-AuNPs exposed to 2 mM Zn²⁺ (black), 2 mM Zn²⁺ and 250 μ M GTP (orange), 2 mM Zn²⁺ and 68 nM apyrase (red) and 2 mM Zn²⁺ (black), 2 mM Zn²⁺ and 250 μ M GTP (orange), 2 mM Zn²⁺ and 68 nM apyrase (red) and 2 mM Zn²⁺, 250 μ M GTP and 68 nM apyrase incubated for 2.5 h at 30 °C (green). All samples were treated with 5 mM Ca²⁺ in Mes buffer (50mM, pH 6) prior to dilution with Zn²⁺ and JR2EC-AuNPs giving a final concentration of 250 μ M Ca²⁺.

Figure S6. UV-vis spectra of JR2EC-AuNPs with (solid line) and without (dashed line) 2 mM Zn²⁺, both in the presence of the highest concentration inhibitors used (colored) and in its absence (black). a) Na₃VO₄ (50 μ M), b) theophylline (50 μ M), c) NaF (50 μ M) and d) GdCl₃ (50 μ M). All inhibitors (1mM) where dissolved in the reaction buffer for each phosphatase including cofactors (Mg²⁺ or Ca²⁺) before dilution with a Zn²⁺ -containing Bis-Tris buffer giving a final concentration of 50 μ M.

Data fitting: The data were fitted using a monophasic Hill equation (Eq S1), where max and min are the largest and smallest LSPR shifts or % inhibition, respectively, x is either time or the concentration of chelant or inhibitor, n is the Hill coefficient and XX_{50} is $t_{1/2}$, CA₅₀ or IC₅₀. Eq. 1 was used for fitting data in Figure 2a) and 2d), Figure 4 a)-b), Figure 5 a)-b), Figure S1 and Figure S2.

(Eq. S1)
$$y = \min + \frac{(max - min)}{1 + (\frac{x}{XX_{50}})^n}$$

References

1 M. Mak, R. Selegård, M. Garbrecht and D. Aili, Part. Part. Syst. Charact, 2014, In press.