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1. Synthesis and isolation of the H& 3-«N@Cso and HoLusxN@Ceo (x= 1, 2)
Synthesis

Ho/Lu and Ho/Y MMNCFs were synthesized by the “stle organic solid” (SOS) route as
described previously. Briefly, a mixture of k&, Y203 or LuOs (99.9%, MaTeck GmbH,
Germany), guanidine thiocyanate (GT) and graphivder was used (molar ratio
Ho/M/GT/C=1/1/2.5/15, M= Lu or Y). After dc-arc disarging, the soot was pre-extracted by
acetone and further Soxhlet-extracted by ©® 20h.

Isolation and Characterization

The isolation of Ho-based MMNCFs was performedviny-step HPLC. At the first step a linear
combination of two analytical 4.6x250 mm Buckypagumns (Nacalai Tesque, Japan) was
applied on a Hewlett-Packard instrument (seriesO11@th toluene as the eluent. Further
isolation was performed by a recycling HPLC (Sunahr Germany) using a Buckyprep
column (10x250 mm; Nacalai Tesque, Japan) andrielas the eluent. The UV detector set to
320 nm was employed for fullerene detection forsédips. The details of HPLC isolation of
Ho-based MMNCFs are described in the Supportingrinition. The purity of the isolated
products was checked by laser desorption/ionizatione-of-flight (LDI-TOF) mass
spectrometry (Biflex 1, Bruker, Germany), the sfra are shown in supporting information as
well. UV-Vis-NIR absorption spectra were measuretbiuene solution using Shimadzu 3100

spectrometer.

1.1 Synthesis and isolation of H& 3-«N@Cso (x=1, 2)
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Figure S1. Chromatogram of a raw K63--N@GCo fullerenes extract synthesized by the
“selective organic solid” method (linear combinatiaf two 4.6x250 mm Buckyprep columns,
flow rate 1.6 ml/min, injection volume 2Qd., toluene as mobile phase, 40. The inset shows
the enlarged chromatographic region of 29.5-34 15 mi
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Figure S2.The HPLC isolation of fraction Fr 3. (10x250 mmdRByprep column; flow rate 1.5
ml/min; injection volume 5 ml; toluene as eluer®;’2).

The synthesis of H¥ 3-\N@GCso (x= 1, 2) was achieved by “selective organic solalite. The
process of dc-arc discharging and solution extactvas the same in the production of
HOxSaN@GCso (I; Xx=1, 2). A mixture of HeO3 and Y203 (99.9%, MaTeck GmbH, Germany),
guanidine thiocyanate (GT) and graphite powderwsgasl (molar ratio Ho/Y/GT/C=1:1:2.5:15).
The chromatogram of the extracted Mo xN@Con fullerenes is shown in Figure S1. The
HoxY3-N@GCeo (I, x= 1, 2) were isolated by multistep HPLC (see Figh#e5). Firstly, the
analytical HPLC was employed to collectMexN@GCso (I) (Fraction 3) and H 3-«N@ Cso

(I) (Fraction 4) respectively. Different to BsxN@GCso (I, X= 1, 2), the retention time of
HoxY 3-xN@GCso (I) in Buckyprep column (4.6x250 mm) are identicaécondly, the Fr 3 was
subjected to isolation by recycling HPLC on a Bymigp column (10x250 mm), see Figure S2.
After 12 cycles, four sub-fractions could be obégirwhich marked as Fr 31 to Fr 34. The
relative yield of HQY 3-N@Cgo (x= 0-3) could be estimated from the integrated acédke
corresponding chromatographic peaks which agrediswith mass spectrum result of Fr 3
(Figure S 2b).
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Figure S3. The isolation of fraction Fr 32. (10x250 mm Buckggp column; flow rate 1.5
ml/min; injection volume 5 ml; toluene as eluer®;’2).
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Figure S4. The isolation of fraction Fr 33. (10x250 mm Buckggp column; flow rate 1.5
ml/min; injection volume 5 ml; toluene as eluer®;’2).

Isolation of HOYN@Cso (I) was accomplished by removing the small amanirit sN@ Cso
() and HeYN@Cso (I) from fraction 32 after 30 cycles. Similarlyhe pure HOYN@ Cgo (1)
could be obtained by removing the minor structifkésY N@GCso (I) and HeN@GCgo (1)) in
fraction 33 through 27 cycles. The purity of MexN@GCeo (I, X= 1, 2) were confirmed by
LDI-TOF mass spectroscopy (Figure S5).



HoY,N@C, () | 1317

Ho,YN@C,  (I) 1393

Normalized Intensity —

800 1000 12'001' 1400 1600 1800
m/z —
Figure S5. The isolated samples of kexN@GCso (I; x= 1, 2) were identified by laser-

desorption/ionization time-of-flight (LDI-TOF) maspectrum analysis, which confirmed their
high purity.

1.2 Synthesis and isolation of Hhus«N@Cso (I, Xx=1, 2)
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Figure S6. Chromatogram of a raw KHousxN@Cn fullerenes extract synthesized by the
“selective organic solid” method (linear combinatiaf two 4.6x250 mm Buckyprep columns,
flow rate 1.6 ml/min, injection volume 2@, toluene as mobile phase, 40. The inset shows
the enlarged chromatographic region of 28.0-31 /. mi

The synthesis of Haus-xN@GCgo (Xx= 1, 2) was achieved by “selective organic solmlite as).
A mixture of HeOz and LyOs3 (99.9%, MaTeck GmbH, Germany), guanidine thiocyaf@T)
and graphite powder was used (molar ratio Ho/Lu@=T1/1:2.5:15).
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Figure S7.The isolation of fraction Fr 1. (10x250 mm Buckgprcolumn; flow rate 1.5 ml/min;
injection volume 5 ml; toluene as eluent; 0.
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Figure S8. The isolation of fraction Fr 12. (10x250 mm Buckggp column; flow rate 1.5
ml/min; injection volume 5 ml; toluene as eluer®;’2).

The mixture of Hd .us«N@ Cxn was subjected to isolation by analytical HPLChie first step
(Figure S6). HA uz-xN@Cgo (1) and HaLus-xN@Cgo (II) were separated into Fr 1 (28.0-29.9
min) and Fr 2 (29.9-31.5 min) respectively accogdim the difference of their cage symmetry.
In the second step, three sub-fractions could berdd after recycling fraction 1 over 30 times
which then named as Fr 11, Fr 12 and Fr 13. Chgdkyrmass spectrum, the dominant structure
in Fr 12 is HaLus-xN@GCso (I) (Figure S7). In the third step, the Fr 12 wabjected to recycling
HPLC again for removing minor structures (HeN@ Cgo (I) and HeGN@GCso (1)). As shown
in Figure S8, Fr 122 was collected after 44 cydieshe fourth step, after running another 44
cycles, the isolation of BAuUN@ Cso (1) was successfully achieved and its purity was covdd
by LDI-TOF mass spectroscopy (Figure S11).
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Figure S9.The isolation of fraction Fr 122. (10x250 mm Bugkgp column; flow rate 1.5
ml/min; injection volume 5 ml; toluene as eluer®;’2).

Similar to HoLUN@Gso (1), the isolation of HOLeN@GCso (1) is extremely time-consuming
due to the retention time of BN@GCso (I) and HoLuN@GCso (l) is almost identical. Only by
running on recycling HPLC over 73 cycles, small amtaf HoLBLN@ Cso (1) could be obtained,
see Figure S10. The purity of HolN@ Cgo (1) was confirmed by LDI-TOF mass spectroscopy
(Figure S11).
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Figure S10.The isolation of fraction Fr 121. (10x250 mm Buckggp column; flow rate 1.5
ml/min; injection volume 5 ml; toluene as eluer®;’2).
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Figure S11.The isolated samples of Haizx<N@GCso (I; x= 1, 2) were identified by LDI-TOF

mass spectrum analysis, which confirmed their ipigtity.



2. Spectroscopic properties of HM3xN@Cso (I; M= Y and Lu; x=1, 2)

2.1 UV-vis-NIR spectra of HeM3-xN@ Cso
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Figure S12.UV-vis-NIR spectra of HY 3xN@GCso (I; x= 0-3) (left) and Hd .uzxN@GCso (I;
x= 0-3) (right) in toluene.

2.2 FTIR spectra of HaM 3xN@Cso (I; x=0-3)
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Figure S13. FTIR spectra of HMs-xN@GCso (I, M= Y, Lu; x= 0-3) compared with
HoxSaxN@ Cso.




3. Quantum chemical calculations

B3LYP calculations were performed using the Firettgle! The basis set was def2-S¥er
carbon atoms, def2-TZ\fRor nitrogen, Stuttgart-Cologne effective coregutials for Sc
(ECP10MDF}{ with {3,1,1,1,1,1/2,2,1,1/4,1,1/1,1/1} valence p&CP28MWE: 5 for Y with
{3,1,1,1,1/4,1,1/4,1/1} valence electron part, dfdn-core ECP56MWB-II for Ho with
{3,1,1,1,1,1/3,1,1,1,1/2,1,1,1,1/1,1,1/1,1} valepeet®

For QTAIM calculations, computations were perfornusihg ORCA!, PBE functional, DKH
relativistic correction, and DKH-TZVP full electrdrasis set.
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Correlation betweeny (arb. unts) and Ho-Sc distance. The fitted polyradnwias used to
computeAy at any point of the MD trajectory.



