Cluster-size dependent internal dynamics and magnetic anisotropy of Ho ions in $HoM_2N@C_{80}$ and $Ho_2MN@C_{80}$ families (M = Sc, Lu, Y)

Y. Zhang,^{*a*} D. Krylov,^{*a*} S. Schiemenz,^{*a*} M. Rosenkranz,^{*a*} R. Westerström,^{*b,c*} J. Dreiser,^{*c,d*} T. Greber,^{*b*} B. Büchner,^{*a*} A. A. Popov^{*a*}

Supporting Information

1. Synthesis and isolation of the Ho _x Y _{3-x} N@C ₈₀ and Ho _x Lu _{3-x} N@C ₈₀ (x= 1, 2)	2
1.1 Synthesis and isolation of Ho _x Y _{3-x} N@C ₈₀ (x=1, 2)	2
1.2 Synthesis and isolation of $Ho_xLu_{3-x}N@C_{80}$ (I, x=1, 2)	5
2. Spectroscopic properties of Ho _x M _{3-x} N@C ₈₀ (I; M= Y and Lu; x=1, 2)	9
2.1 UV-vis-NIR spectra of Ho _x M _{3-x} N@C ₈₀	9
2.2 FTIR spectra of $Ho_x M_{3-x} N @ C_{80}$ (I; x=0-3)	9
3. Quantum chemical calculations	10

1. Synthesis and isolation of the Ho_xY_{3-x}N@C₈₀ and Ho_xLu_{3-x}N@C₈₀ (x= 1, 2)

Synthesis

Ho/Lu and Ho/Y MMNCFs were synthesized by the "selective organic solid" (SOS) route as described previously. Briefly, a mixture of Ho₂O₃, Y₂O₃ or Lu₂O₃ (99.9%, MaTeck GmbH, Germany), guanidine thiocyanate (GT) and graphite powder was used (molar ratio Ho/M/GT/C=1/1/2.5/15, M= Lu or Y). After dc-arc discharging, the soot was pre-extracted by acetone and further Soxhlet-extracted by CS₂ for 20h.

Isolation and Characterization

The isolation of Ho-based MMNCFs was performed by two-step HPLC. At the first step a linear combination of two analytical 4.6×250 mm Buckyprep columns (Nacalai Tesque, Japan) was applied on a Hewlett-Packard instrument (series 1100) with toluene as the eluent. Further isolation was performed by a recycling HPLC (Sunchrom, Germany) using a Buckyprep column (10×250 mm; Nacalai Tesque, Japan) and toluene as the eluent. The UV detector set to 320 nm was employed for fullerene detection for all steps. The details of HPLC isolation of Ho-based MMNCFs are described in the Supporting Information. The purity of the isolated products was checked by laser desorption/ionization time-of-flight (LDI-TOF) mass spectrometry (Biflex III, Bruker, Germany), the spectra are shown in supporting information as well. UV-Vis-NIR absorption spectra were measured in toluene solution using Shimadzu 3100 spectrometer.

1.1 Synthesis and isolation of Ho_xY_{3-x}N@C₈₀ (x=1, 2)

Figure S1. Chromatogram of a raw $Ho_xY_{3-x}N@C_{2n}$ fullerenes extract synthesized by the "selective organic solid" method (linear combination of two 4.6×250 mm Buckyprep columns, flow rate 1.6 ml/min, injection volume 200 µL, toluene as mobile phase, 40 °C). The inset shows the enlarged chromatographic region of 29.5-34.5 min.

Figure S2. The HPLC isolation of fraction Fr 3. (10×250 mm Buckyprep column; flow rate 1.5 ml/min; injection volume 5 ml; toluene as eluent; 20 °C).

The synthesis of Ho_xY_{3-x}N@C₈₀ (x= 1, 2) was achieved by "selective organic solid" route. The process of dc-arc discharging and solution extraction was the same in the production of Ho_xSc_{3-x}N@C₈₀ (I; x=1, 2). A mixture of Ho₂O₃ and Y₂O₃ (99.9%, MaTeck GmbH, Germany), guanidine thiocyanate (GT) and graphite powder was used (molar ratio Ho/Y/GT/C=1:1:2.5:15). The chromatogram of the extracted Ho_xY_{3-x}N@C_{2n} fullerenes is shown in Figure S1. The Ho_xY_{3-x}N@C₈₀ (I, x= 1, 2) were isolated by multistep HPLC (see Figure S2-5). Firstly, the analytical HPLC was employed to collect Ho_xY_{3-x}N@C₈₀ (I) (Fraction 3) and Ho_xY_{3-x}N@C₈₀ (II) (Fraction 4) respectively. Different to Ho_xSc_{3-x}N@C₈₀ (I, x= 1, 2), the retention time of Ho_xY_{3-x}N@C₈₀ (I) in Buckyprep column (4.6×250 mm) are identical. Secondly, the Fr 3 was subjected to isolation by recycling HPLC on a Buckyprep column (10×250 mm), see Figure S2. After 12 cycles, four sub-fractions could be obtained which marked as Fr 31 to Fr 34. The relative yield of Ho_xY_{3-x}N@C₈₀ (x= 0-3) could be estimated from the integrated areas of the corresponding chromatographic peaks which agrees well with mass spectrum result of Fr 3 (Figure S 2b).

Figure S3. The isolation of fraction Fr 32. (10×250 mm Buckyprep column; flow rate 1.5 ml/min; injection volume 5 ml; toluene as eluent; 20 °C).

Figure S4. The isolation of fraction Fr 33. (10×250 mm Buckyprep column; flow rate 1.5 ml/min; injection volume 5 ml; toluene as eluent; 20 °C).

Isolation of HoY₂N@C₈₀ (I) was accomplished by removing the small amount of Y₃N@C₈₀ (I) and Ho₂YN@C₈₀ (I) from fraction 32 after 30 cycles. Similarly, the pure Ho₂YN@C₈₀ (I) could be obtained by removing the minor structures (HoY₂N@C₈₀ (I) and Ho₃N@C₈₀ (I)) in fraction 33 through 27 cycles. The purity of Ho_xY_{3-x}N@C₈₀ (I, x= 1, 2) were confirmed by LDI-TOF mass spectroscopy (Figure S5).

Figure S5. The isolated samples of $Ho_x Y_{3-x} N@C_{80}$ (I; x=1, 2) were identified by laserdesorption/ionization time-of-flight (LDI-TOF) mass spectrum analysis, which confirmed their high purity.

1.2 Synthesis and isolation of Ho_xLu_{3-x}N@C₈₀ (I, x=1, 2)

Figure S6. Chromatogram of a raw $Ho_xLu_{3-x}N@C_{2n}$ fullerenes extract synthesized by the "selective organic solid" method (linear combination of two 4.6×250 mm Buckyprep columns, flow rate 1.6 ml/min, injection volume 200 µL, toluene as mobile phase, 40 °C). The inset shows the enlarged chromatographic region of 28.0-31.5 min.

The synthesis of $H_{0x}Lu_{3-x}N@C_{80}$ (x=1, 2) was achieved by "selective organic solid" route as). A mixture of $H_{02}O_3$ and Lu_2O_3 (99.9%, MaTeck GmbH, Germany), guanidine thiocyanate (GT) and graphite powder was used (molar ratio Ho/Lu/GT/C=1:1:2.5:15).

Figure S7. The isolation of fraction Fr 1. (10×250 mm Buckyprep column; flow rate 1.5 ml/min; injection volume 5 ml; toluene as eluent; 20 °C).

Figure S8. The isolation of fraction Fr 12. (10×250 mm Buckyprep column; flow rate 1.5 ml/min; injection volume 5 ml; toluene as eluent; 20 °C).

The mixture of Ho_xLu_{3-x}N@C_{2n} was subjected to isolation by analytical HPLC in the first step (Figure S6). Ho_xLu_{3-x}N@C₈₀ (I) and Ho_xLu_{3-x}N@C₈₀ (II) were separated into Fr 1 (28.0-29.9 min) and Fr 2 (29.9-31.5 min) respectively according to the difference of their cage symmetry. In the second step, three sub-fractions could be obtained after recycling fraction 1 over 30 times which then named as Fr 11, Fr 12 and Fr 13. Checking by mass spectrum, the dominant structure in Fr 12 is Ho_xLu_{3-x}N@C₈₀ (I) (Figure S7). In the third step, the Fr 12 was subjected to recycling HPLC again for removing minor structures (HoLu₂N@C₈₀ (I) and Ho₃N@C₈₀ (I)). As shown in Figure S8, Fr 122 was collected after 44 cycles. In the fourth step, after running another 44 cycles, the isolation of Ho₂LuN@C₈₀ (I) was successfully achieved and its purity was confirmed by LDI-TOF mass spectroscopy (Figure S11).

Figure S9. The isolation of fraction Fr 122. (10×250 mm Buckyprep column; flow rate 1.5 ml/min; injection volume 5 ml; toluene as eluent; 20 °C).

Similar to Ho₂LuN@C₈₀ (I), the isolation of HoLu₂N@C₈₀ (I) is extremely time-consuming due to the retention time of Lu₃N@C₈₀ (I) and HoLu₂N@C₈₀ (I) is almost identical. Only by running on recycling HPLC over 73 cycles, small amount of HoLu₂N@C₈₀ (I) could be obtained, see Figure S10. The purity of HoLu₂N@C₈₀ (I) was confirmed by LDI-TOF mass spectroscopy (Figure S11).

Figure S10. The isolation of fraction Fr 121. (10×250 mm Buckyprep column; flow rate 1.5 ml/min; injection volume 5 ml; toluene as eluent; 20 °C).

Figure S11. The isolated samples of $Ho_xLu_{3-x}N@C_{80}$ (I; x=1, 2) were identified by LDI-TOF mass spectrum analysis, which confirmed their high purity.

2. Spectroscopic properties of Ho_xM_{3-x}N@C₈₀ (I; M= Y and Lu; x=1, 2)

2.1 UV-vis-NIR spectra of Ho_xM_{3-x}N@C₈₀

Figure S12. UV-vis-NIR spectra of $Ho_x Y_{3-x} N@C_{80}$ (I; x=0-3) (left) and $Ho_x Lu_{3-x} N@C_{80}$ (I; x=0-3) (right) in toluene.

2.2 FTIR spectra of Ho_xM_{3-x}N@C₈₀ (I; x=0-3)

Figure S13. FTIR spectra of $Ho_x M_{3-x} N@C_{80}$ (I; M= Y, Lu; x= 0-3) compared with $Ho_x Sc_{3-x} N@C_{80}$.

3. Quantum chemical calculations

For QTAIM calculations, computations were performed using ORCA,⁷ PBE functional, DKH relativistic correction, and DKH-TZVP full electron basis set.⁸

- 1. A. A. Granovsky, 2013. Firefly version 8.0.0,
- http://classic.chem.msu.su/gran/firefly/index.html
- 2. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.
- 3. M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys., 1987, 86, 866-872.
- 4. D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, *Theor. Chim. Acta*, 1990, **77**, 123-141.
- 5. X. Cao and M. Dolg, J. Chem. Phys., 2001, 115, 7348-7355.
- 6. M. Dolg, H. Stoll, A. Savin and H. Preuss, *Theor. Chim. Acta*, 1989, **75**, 173-194.
- 7. F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73-78.
- 8. D. A. Pantazis, X.-Y. Chen, C. R. Landis and F. Neese, J. Chem. Theory Comput., 2008, 4, 908-919.

Correlation between $\Delta \chi$ (arb. unts) and Ho-Sc distance. The fitted polynomial was used to compute $\Delta \chi$ at any point of the MD trajectory.