Electronic Supplementary Information for:

Dynamics and polarization of superparamagnetic chiral

 nanomotors in a rotating magnetic fieldKonstantin I. Morozov and Alexander M. Leshansky*
Department of Chemical Engineering and Russel Berrie Nanotechnology Institute (RBNI), Technion - Israel Institute of Technology, Haifa 32000, Israel

(Dated: September 2, 2014)

[^0]
I. Rotation matrix

We use the definition of the three Euler angles φ, θ and ψ following Ref. [1]. The components of any vector \mathbf{W} in the body-fixed coordinate system (BCS) and in the laboratory coordinate system (LCS) are determined from the relation $\mathbf{W}^{B C S}=\mathbf{R} \cdot \mathbf{W}$, where \mathbf{R} is the rotation matrix. The rotation matrix is expressed explicitly via the Euler angles [2]

$$
\mathbf{R}=\left(\begin{array}{ccc}
c_{\varphi} c_{\psi}-s_{\varphi} s_{\psi} c_{\theta} & s_{\varphi} c_{\psi}+c_{\varphi} s_{\psi} c_{\theta} & s_{\psi} s_{\theta} \\
-c_{\varphi} s_{\psi}-s_{\varphi} c_{\psi} c_{\theta} & -s_{\varphi} s_{\psi}+c_{\varphi} c_{\psi} c_{\theta} & c_{\psi} s_{\theta} \\
s_{\varphi} s_{\theta} & -c_{\varphi} s_{\theta} & c_{\theta}
\end{array}\right)
$$

where we use the compact notation, $s_{\psi}=\sin \psi, c_{\theta}=\cos \theta$, etc.

II. Approximate rotational viscous resistance coefficients of a helix

We approximate the rotational viscous resistance coefficients of a helical propeller by the corresponding values for a prolate spheroid approximating the helix. Let a and b be, correspondingly, the longitudinal (along the symmetry axis) and transversal semi-axes of the spheroid. The respective viscous resistances due to rotation about the symmetry axis and in perpendicular direction read [3]

$$
\begin{equation*}
\kappa_{\|}=2 \eta V n_{\perp}^{-1}, \quad \kappa_{\perp}=2 \eta V \frac{a^{2}+b^{2}}{a^{2} n_{\|}+b^{2} n_{\perp}}, \tag{S1}
\end{equation*}
$$

where η is the dynamic viscosity of the liquid, V is the spheroid volume, $n_{\|}$and $n_{\perp}=$ $\left(1-n_{\|}\right) / 2$ are the depolarizing factors of the spheroid. For the prolate spheroid with $a>b$ and eccentricity $e=\sqrt{1-b^{2} / a^{2}}$ the depolarizing factor along the symmetry axis reads [4]

$$
\begin{equation*}
n_{\|}=\frac{1-e^{2}}{e^{3}}\left(\frac{1}{2} \ln \frac{1+e}{1-e}-e\right) . \tag{S2}
\end{equation*}
$$

III. Particle-based numerical algorithm

The numerical procedure used to compute the various components of the viscous resistance tensor is based on multipole expansion scheme [5]. The filament is constructed from nearly touching N rigid spheres ("shish-kebab" filament) having the same radius $r=1$. The no-slip condition at the surface of all spheres is enforced rigorously via the use of direct
transformation between solid spherical harmonics centered at origins of different spheres. The method yields a system of $\mathcal{O}\left(N \mathcal{L}^{2}\right)$ linear equations for the expansion coefficients and the accuracy of calculations is controlled by the number of spherical harmonics (i.e. truncation level), \mathcal{L}, retained in the series. This approach has been applied before for modeling low-Reynolds-number swimmers, e.g., rotating helix $[6,7]$ and undulating filament [8].

The spheres composing the helical filament are partitioned along the backbone of the filament $\mathbf{X}(s)$ (see Eq. (21) and Fig. S1) so that the distance between centers of neighboring spheres is set to $2.02 r$. The motion of the i th sphere composing a helix can be decomposed into translation \boldsymbol{U}_{i} and rotation $\boldsymbol{\omega}_{i}$ about its center, as $\boldsymbol{V}_{i}=\boldsymbol{U}_{i}+\boldsymbol{\omega}_{i} \times \boldsymbol{r}_{i}$ with \boldsymbol{r}_{i} being the radius vector with origin at the center of i th sphere. For any prescribed rigid-body-motion of the helix, $\left\{\boldsymbol{U}_{i}, \boldsymbol{\omega}_{i}\right\}$ are determined uniquely. For instance, for computing the components of the resistance tensor, such as $\xi_{\|}, \kappa_{\|}$and $\mathcal{B}_{\|}$, associated with translation U and rotation ω about the x_{3}-axis, one has $\boldsymbol{\omega}_{i}=\boldsymbol{e}_{3} \omega$ and $\boldsymbol{U}_{i}=U \boldsymbol{e}_{3}+\omega \boldsymbol{e}_{3} \times \boldsymbol{R}_{i}$, where \boldsymbol{R}_{i} is a position vector to the i th sphere center.

FIG. S1. Illustration of particle-based "shish-kebab" 2-turn helix approximating the regular helix with circular cross section of radius $r=1$ (transparent blue) with helical radius $R=2.5$ and pitch angle $\Theta=65^{\circ}$.

IV. Demagnetizing factors of infinitely long elliptic cylinder

The demagnetizing factor N of infinitely long cylinder with an elliptic cross-section with corresponding semi-axes \hat{a} and \hat{b} was reported in Ref. [9]:

$$
N=(2 \pi)^{-1}\left[4 \arctan \frac{\hat{a}}{\hat{b}}+\frac{2 \hat{b}}{\hat{a}} \ln \frac{\hat{b}}{\hat{a}}+\left(\frac{\hat{a}}{\hat{b}}-\frac{\hat{b}}{\hat{a}}\right) \ln \left(1+\frac{\hat{b}^{2}}{\hat{a}^{2}}\right)\right] .
$$

At $\hat{a}>\hat{b}$ it determines the demagnetization factor N_{1} along the short axis. The demagnetizing factor N_{2} can be found either by the permutation $\hat{a} \leftrightarrow \hat{b}$ or from the equality $N_{1}+N_{2}=1$. For the regular helix with circular cross-section $N_{1}=N_{2}=1 / 2$.
[1] Landau, L. D.; Lifshitz, E. M. Mechanics, 3rd ed.; Pergamon Press, Oxford, 1976.
[2] Diebel, J. Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors; Matrix, Citeseer, 2006.
[3] Jeffrey, G. B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London A 1922, 102, 161-179.
[4] Landau, L. D.; Lifshitz, E. M. Electrodynamics of Continuous Media, 2nd ed.; Pergamon Press, Oxford, 1984.
[5] A. V. Filippov, J. Colloid Interface Sci., 2000, 229, 184-195.
[6] A. M. Leshansky, Phys. Rev. E, 2009, 80, 051911.
[7] K. I. Morozov and A. M. Leshansky, Nanoscale, 2014, 6, 1580-1588.
[8] R. S. Berman, O. Kenneth, J. Sznitman and A. M. Leshansky, New J. Phys., 2013, 15, 075022.
[9] Brown Jr., W. F. Magnetostatic Principles in Ferromagnetism; North-Holland, Amsterdam, 1962.

[^0]: * lisha@tx.technion.ac.il

