Supporting Information

Hot carriers in epitaxial graphene sheets with and without hydrogen intercalation: role of substrate coupling

Fan-Hung Liu¹, Shun-Tsung Lo^{1*}, Chiashain Chuang², Tak-Pong Woo², Hsin-Yen Lee², Chieh-Wen Liu¹, Chieh-I Liu¹, Lung-I Huang^{2,3}, Cheng-Hua Liu², Yanfei Yang³, Chih-Yuan Chang⁴, Lain-Jong Li⁴, Patrick C. Mende⁵, Randall M. Feenstra⁵, Randolph E. Elmquist^{3*}, and Chi-Te Liang^{1, 2}

 ¹Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan
² Department of Physics, National Taiwan University, Taipei 106, Taiwan
³National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
⁴Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
⁵ Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

* Corresponding authors: shuntsunglo@gmail.com and randolph.elmquist@nist.gov

Energy: 4.5eV

a)

Fig. S1. Low-energy electron microscopy (LEEM) data for a sample produced using similar temperature (1950 °C) and annealing time (1800 s) as used for Sample A: a) LEEM image of graphene on the SiC(0001) surface, obtained using an electron energy of 4.5 eV; b) color image of the same ~25 μ m diameter region produced from multiple energy spectra in the electron-energy range from 2 eV to 8 eV, with colors showing conducting graphene layers - monolayer is identified in blue and bilayer is shown as red.

b)

Fig. S2 High-field magneto-resistivity $\rho_{xx}(B)$ at various temperatures *T*. (a) From top to bottom: T = 2.4, 3, 4, 5, 6, and 7 K. (b) From top to bottom: T = 3, 5, 7, 9, 11, 20, and 30 K.

Fig. S3 The filling factor v as a function of 1/B.

Figure S4 Resistivity measurements ρ_{xx} as a function of temperature *T* for graphene sample without hydrogen intercalation. The inset shows the resistivity measurements as a function of temperature for graphene sample with hydrogen intercalation.

Figure S5 Energy relaxation time τ_{ε} as a function of charge carrier temperature T_{cc} for graphene samples without hydrogen intercalation and for hydrogen-intercalated graphene sample.