## **Supplementary Information**

## Discovery of a Silicon-based Ferrimagnetic Wheel Structure in $V_x Si_{12}^-$ (x = 1-3) Clusters: Photoelectron Spectroscopy and Density Functional Theory Investigation

Xiaoming Huang <sup>1</sup>, Hong-Guang Xu <sup>2</sup>, Shengjie Lu <sup>2</sup>, Yan Su <sup>1</sup>, R. B. King<sup>4</sup>, Jijun Zhao <sup>1,3</sup>, Weijun Zheng <sup>2</sup>

<sup>1</sup>Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China

<sup>2</sup> Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

<sup>3</sup> Beijing Computational Science Research Center, Beijing 100089, China

<sup>4</sup> Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia, USA

| from Hirshfeld analysis are given in the parenthesis for reference. |                        |          |                        |         |  |
|---------------------------------------------------------------------|------------------------|----------|------------------------|---------|--|
|                                                                     | Charge (e)             |          | Spin (µ <sub>B</sub> ) |         |  |
| -                                                                   | V                      | Si       | V                      | Si      |  |
| VSi <sub>12</sub> <sup>-</sup>                                      | -0.466                 | -0.044   | 0                      | 0       |  |
|                                                                     | (-0.108)               | (-0.074) | (0)                    | (0)     |  |
| $V_2Si_{12}^-$                                                      | -0.459, -0.049         | -0.041   | -0.192, 0.733          | 0.038   |  |
|                                                                     | (-0.173, 0.078)        | (-0.075) | (-0.114, 0.589)        | (0.044) |  |
| $V_3 Si_{12}$                                                       | 0.090, -0.641, 0.091   | -0.045   | 2.399, -0.600, 2.413   | -0.018  |  |
|                                                                     | (0.094, -0.200, 0.094) | (-0.082) | (2.038, -0.333, 2.051) | (0.020) |  |

**Table S1**. On-site charge and on-site spin moment on V atoms and Si atoms (average values) in  $V_x Si_{12}^-$  (x=1, 2, 3) clusters from Mulliken population analysis. The values from Hirshfeld analysis are given in the parenthesis for reference.

|                                   | $V_i - V_s$ | $Si-V_i$ | Si-V <sub>s</sub> | Si-Si        |
|-----------------------------------|-------------|----------|-------------------|--------------|
| VSi <sub>12</sub> -               | _           | 2.643    | _                 | 2.357, 2.391 |
| V <sub>2</sub> Si <sub>12</sub>   | 2.213       | 2.661    | 2.573, 2.740      | 2.441, 2.538 |
| V <sub>3</sub> Si <sub>12</sub> - | 2.271       | 2.682    | 2.707             | 2.443, 2.547 |

**Table S2**. V-V, Si-V, and Si-Si bond lengths (Å) in  $V_x Si_{12}^-$  (x=1, 2, 3) and  $V_3 Si_{12}$  clusters ( $V_i$  denotes the interior V atom,  $V_s$  denotes the surface V atoms).

| Atom                | Х       | Y       | Ζ       |  |  |  |  |
|---------------------|---------|---------|---------|--|--|--|--|
| VSi <sub>12</sub> - |         |         |         |  |  |  |  |
| Si                  | 1.1793  | -1.1938 | 2.0287  |  |  |  |  |
| Si                  | -1.2270 | 1.1279  | 2.0383  |  |  |  |  |
| Si                  | 1.1278  | 1.1963  | 2.0782  |  |  |  |  |
| Si                  | -2.3953 | 1.1445  | -0.0095 |  |  |  |  |
| Si                  | 2.3953  | -1.1445 | 0.0095  |  |  |  |  |
| Si                  | -1.1761 | -1.2624 | 2.0111  |  |  |  |  |
| Si                  | 2.3247  | 1.2447  | 0.0478  |  |  |  |  |
| Si                  | -2.3247 | -1.2447 | -0.0478 |  |  |  |  |
| Si                  | -1.1793 | 1.1938  | -2.0287 |  |  |  |  |
| Si                  | 1.2270  | -1.1279 | -2.0383 |  |  |  |  |
| Si                  | 1.1761  | 1.2624  | -2.0111 |  |  |  |  |
| Si                  | -1.1278 | -1.1963 | -2.0782 |  |  |  |  |
| V                   | 0       | 0       | 0       |  |  |  |  |
|                     |         |         |         |  |  |  |  |

Table S3. Cartesian coordinates (Å) for  $V_x Si_{12}$  (x=1, 2, 3) clusters.

 $V_2 Si_{12}$ 

| Si | 0.6479  | -1.1371 | 2.4099  |
|----|---------|---------|---------|
| Si | -0.7194 | 0.9655  | 2.3372  |
| Si | 1.7030  | 1.0387  | 1.7142  |
| Si | -2.4544 | 0.8686  | 0.6470  |
| Si | 2.3145  | -1.1985 | 0.6698  |
| Si | -1.6445 | -1.3180 | 1.6678  |
| Si | 2.4083  | 1.0121  | -0.6113 |
| Si | -2.2519 | -1.2880 | -0.7162 |
| Si | -1.7562 | 1.0141  | -1.6765 |
| Si | 1.7071  | -1.1743 | -1.7147 |
| Si | 0.6675  | 1.0855  | -2.2967 |
| Si | -0.5919 | -1.0781 | -2.4497 |
| V  | 0       | 0       | 0       |
| V  | 0.0546  | -2.2121 | -0.0397 |

| V <sub>3</sub> Si <sub>12</sub> - |         |         |        |  |  |  |
|-----------------------------------|---------|---------|--------|--|--|--|
| Si                                | 0.6280  | -1.1315 | 2.3365 |  |  |  |
| Si                                | -0.7031 | 1.0432  | 2.3579 |  |  |  |
| Si                                | 1.6794  | 1.1231  | 1.7630 |  |  |  |
| Si                                | -2.4085 | 1.0346  | 0.6115 |  |  |  |
| Si                                | 2.3929  | -1.0506 | 0.6500 |  |  |  |
| Si                                | -1.7368 | -1.1841 | 1.6644 |  |  |  |

| V  | 0.0538  | -2.2702 | -0.0396 |
|----|---------|---------|---------|
| V  | 0       | 0       | 0       |
| V  | -0.0543 | 2.2698  | 0.0392  |
| Si | -0.5734 | -1.0771 | -2.3751 |
| Si | 0.6498  | 1.1581  | -2.3185 |
| Si | 1.7911  | -1.0395 | -1.7048 |
| Si | -1.7344 | 1.1032  | -1.7229 |
| Si | -2.3405 | -1.1423 | -0.6895 |
| Si | 2.3561  | 1.1704  | -0.5719 |

**Table S4**. Comparison of VDEs (eV) of  $V_x Si_{12}^-$  (x=1, 2, 3) clusters from experiment and DFT calculations using PBE, RPBE and M06-L functional. DMol<sup>3</sup> program and DND basis set were used for PBE and RPBE, while Gaussian09 program and 6-311+G(d) basis set were used for PBE, M06-L, and M06.

| Cluster                        | Expt. (eV) | PBE/DND | RPBE/DND | PBE/       | M06-L/     | M06/       |
|--------------------------------|------------|---------|----------|------------|------------|------------|
|                                |            |         |          | 6-311+G(d) | 6-311+G(d) | 6-311+G(d) |
| VSi <sub>12</sub> <sup>-</sup> | 3.82±0.08  | 3.94    | 3.89     | 3.86       | 3.79       | 3.82       |
| $V_2 Si_{12}^-$                | 3.66±0.08  | 3.75    | 3.72     | 3.69       | 3.67       | 3.81       |
| $V_3Si_{12}^-$                 | 2.59±0.08  | 2.54    | 2.53     | 2.51       | 2.49       | 2.54       |



**Figure S1**. Low-lying isomer structures of  $V_x Si_{12}$  (*x*=1, 2, 3) clusters. For each isomer, its energy difference to the ground state (a) is provided. For the magnetic clusters, their magnetic moments are given in parenthesis.



Figure S2. Energies and spatial distributions of selected molecular orbitals for  $VSi_{12}$ cluster, showing  $1S^{1}P^{3}1D^{5}$  electron shell.



**Figure S3**. Spin-polarized energy levels for  $V_3Si_{12}$  and  $V_3Si_{12}$ <sup>-</sup> clusters. The solid lines are occupied levels and the dashed lines are unoccupied levels. A moderate HOMO-LUMO gap of 0.339 eV is obtained for the closed-shell  $V_3Si_{12}$ <sup>-</sup> cluster.



**Figure S4**. Comparison of photoelectron spectra of  $V_x Si_{12}^-$  (x=1, 2, 3) clusters from experiment (upper panels) and DFT calculations using PBE/DND (middle panels), RPBE/DND (lower panels), M06/6-311+G(d) (lower panels), and M06-L/6-311+G(d) (lower panels). DMol<sup>3</sup> program was used for the PBE and RPBE functionals with DND basis set and Gaussian09 program was used for M06 and M06L functionals with 6-311+G(d) basis set. In the theoretical spectra, a uniform Gaussian broadening of 0.1 eV was chosen.