Electronic Supporting Information

Nanoscale study of charge extraction in organic solar cells: impact of interfacial molecular configurations

Fu-Ching Tang,^{a,d} Fu-Chiao Wu,^{b,d} Chia-Te Yen,^b Jay Chang,^c Wei-Yang Chou,^b Shih-Hui Gilbert Chang^b and Horng-Long Cheng^{*b}

- ^a Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
- ^b Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung

University, Tainan 701, Taiwan

^c AU Optronics Corporation, Taichung, Taiwan

^d F.-C. Tang and F.-C. Wu contributed equally to this work.

* To whom correspondence should be addressed: e-mail: <u>shlcheng@mail.ncku.edu.tw</u>

Figure S1. The induced charge in a pentacene-PEDOT dimer with face-to-face configuration as a function of chain length of PEDOT. Note: A further increase in chain length of PEDOT would not lead to a significant change in the induced charges.

Figure S2. Absorption spectra of (a) pentacene and (b) P3HT films, respectively, grown on the NS-PEDOT and P-PEDOT layers, respectively.

Figure S3. Top panel: AFM image of pentacene film developed on nanogroove PEDOT layer. Bottom panel: Corresponding *I-V* characteristics from c-AFM at different locations.

Figure S4. XRD spectra of P3HT layer deposited on the NS-PEDOT and P-PEDOT layers, respectively.