Supporting Information

Facile Synthesis of One-dimensional Mn₃O₄/Zn₂SnO₄ Hybrid Composites and Their High Performance as Anodes for LIBs

Ranran Zhang, Yanyan He, Aihua Li and Liqiang Xu*

Figure Captions:

- Fig. S1 XRD patterns of the final products obtained in the absence or 16 mL $NH_3 \cdot H_2O$ was added in the hydrothermal process.
- Fig. S2 (a) FTIR spectrum of the as-obtained 1branched Mn₃O₄/Zn₂SnO₄ composites prepared at 180 °C for 24 h (8 mL NH₃·H₂O); (b) Typical N₂ gas adsorption desorption isotherm of Mn₃O₄/Zn₂SnO₄ nanostructures. The inset shows the corresponding pore-size distribution curve of the product.
- Fig. S3 (a) The corresponding SAED pattern of Zn₂SnO₄ nanoneedle in the square area in Fig. 4c. (b) EDX spectrum of the final products (inset show the related data).
- Fig. S4 FESEM images of (a, c) branched MnOOH and as-prepared β -MnO₂ nanorods, respectively; (b, d) TEM images of the as-obtained MnOOH and β -MnO₂ nanorods, respectively.
- Fig. S5 (a, b) TEM images of $Mn_3O_4/Zn_2SnO_4/Li$ after 10 cycles at a current density of 1000 mA g⁻¹
- Fig. S6 XRD patterns of the 1D $Mn_3O_4/ZnFe_2O_4$ nanocomposites obtained after the hydrothermal process.

- Fig. S7 TEM images of the as-obtained 1D $Mn_3O_4/ZnFe_2O_4$ composites at 180°C/24 h using different amounts of urea: (a) 1.7 g, (b) 1.8 g, (c)1.9 g, and (d) 2.0 g.
- Fig. S8 XRD patterns of (a) the black intermediate; (b) 1D $Mn_2O_3/CoFe_2O_4$ composites obtained after annealed at 620 °C in air for 2.5 h.
- Fig. S9 (a, b) TEM images of the black intermediate prepared at 180 °C for 24 h (8 mLNH₃·H₂O); (c, d) TEM image of 1D Mn₂O₃/CoFe₂O₄ composites obtained after annealed at 620 °C in air for 2.5 h.
- Fig. S10 XRD patterns of (a) the black intermediate (180 $^{\circ}C/24$ h); (b) 1D

Mn₂O₃/NiFe₂O₄composites obtained after annealed at 680 °C in air for 2.5h.

- Fig. S11 (a, b) TEM images of the black intermediate prepared at 180 °C for 36 h (8 mLNH₃·H₂O); (c, d) TEM image of 1D Mn₂O₃/NiFe₂O₄composites obtained after annealed at 620 °C in air for 2.5 h.
- **Tab. S1** Cycle performance comparisons between the $Mn_3O_4/ZnFe_2O_4$ composites and previously reported $ZnFe_2O_4$ structures.
- **Tab. S2** Cycle performance comparisons between the Mn₂O₃/CoFe₂O₄ composites and previously reported ZnFe₂O₄ structures.

Experimental Section

Preparation of the $Mn_3O_4/Zn_2Fe_2O_4$ hybrid composites

The synthesis of 1D ZnFe₂O₄/Mn₃O₄ nanocomposites was started from the β -MnO₂ nanorods (prepared by annealing MnOOH nanorods at 300 °C for 4 h). The asprepared β -MnO₂ nanorods (400 mg) with 25 mL deionized water were firstly ultrasonicated for 30 min and then were stirred for another 30 min. Then, 0.2 M ZnCl₂ (5 mL) and 0.4 M FeCl₃·6H₂O (5 mL) were added into the above solution. After it is stirred for 30 min, 1.8 g urea (dissolved in 5 mL deionized water) were dropped slowly. Last, the mixed solution was continually stirred for 1h before transferred into a Teflon-lined autoclave with a capacity of 60 mL. The autoclave was heated from room temperature to 180 °C and maintained at 180 °C for 24 h. The resulting 1D Mn₃O₄/ZnFe₂O₄ product was collected by centrifugation and washed repeatedly with anhydrous ethanol and distilled water for several times. Finally, it was dried in vacuum at 60°C for 12 h.

Preparation of the Mn₂O₃/CoFe₂O₄ hybrid composites

The synthesis of 1D $Mn_2O_3/CoFe_2O_4$ nanocomposites was started from the β -MnO_2 nanorods (prepared by annealing MnOOH nanorods at 300 °C for 4 h). The asprepared β -MnO_2 nanorods (400 mg) with 25 mL deionized water were firstly ultrasonicated for 30 min and then were stirred for another 30 min. Then, 0.2 M $C_4H_6CoO_4.4H_2O$ (5 mL) and 0.4 M FeCl₃.6H₂O (5 mL) were added into the above solution. After it is stirred for 30 min, 8 mL NH₃·H₂O were dropped slowly. Last, the mixed solution was continually stirred for 1h before transferred into a Teflon-lined autoclave with a capacity of 60 mL. The autoclave was heated from room temperature

to 180 °C and maintained at 180 °C for 24 h. The resulting black intermediate was collected by centrifugation and washed repeatedly with anhydrous ethanol and distilled water for several times. Finally, it was dried in vacuum at 60°C for 12 h. Then the black intermediate was annealed at 620 °C in air for 2.5 h in a tube furnace, followed by natural cooling to room temperature. The heating rate was set to 5 °C min⁻¹.

Preparation of the $Mn_2O_3/NiFe_2O_4$ hybrid composites

The synthesis of 1D $Mn_2O_3/NiFe_2O_4$ nanocomposites was started from the β -MnO₂ nanorods (prepared by annealing MnOOH nanorods at 300 °C for 4 h). The asprepared β -MnO₂ nanorods (400 mg) with 25 mL deionized water were firstly ultrasonicated for 30 min and then were stirred for another 30 min. Then, 0.2 M C₄H₆NiO₄·4H₂O (5 mL) and 0.4 M FeCl₃·6H₂O (5 mL) were added into the above solution. After it is stirred for 30 min, 8 mL NH₃·H₂O were dropped slowly. Last, the mixed solution was continually stirred for 1h before transferred into a Teflon-lined autoclave with a capacity of 60 mL. The autoclave was heated from room temperature to 180 °C and maintained at 180 °C for 24 h. The resulting black intermediate was collected by centrifugation and washed repeatedly with anhydrous ethanol and distilled water for several times. Finally, it was dried in vacuum at 60°C for 12 h. Then the black intermediate was annealed at 680 °C in air for 2.5 h in a tube furnace, followed by natural cooling to room temperature. The heating rate was set to 5 °C min⁻¹.

Fig. S1 XRD patterns of the final products obtained in the absence or 16 mL $NH_3 \cdot H_2O$ was added in the hydrothermal process.

Fig. S2 (a) FTIR spectrum of the as-obtained 1D branched Mn_3O_4/Zn_2SnO_4 composites prepared at 180 °C for 24 h (8 mL $NH_3 \cdot H_2O$); (b) Typical N_2 gas adsorption desorption isotherm of Mn_3O_4/Zn_2SnO_4 nanostructures. The inset shows the corresponding pore-size distribution curve of the product.

Fig. S2a shows the FTIR spectrum curve of the product. The sharp peak centered at 528 cm⁻¹ can be assigned to the Mn-O stretching vibration, while the bands observed at 1399 and 1113 cm⁻¹ could be ascribed to the vibrations of the M–O or M–O–M groups in the Zn₂SnO₄,respectively; In addition, the bands located at 3443 and 1633 cm⁻¹ are attributed to the bending and stretching vibration modes of the OH group in H₂O, which might originate from the surface adsorption of a small amount of water in the air. Fig.S2b shows the full nitrogen sorption isotherms of the product, which gives an obvious hysteresis loop of type IV, suggesting the presence of macrospores, which may result from the mesoporous rods of the Mn₃O₄ and the gaps between neighboring Zn₂SnO₄ needle-like nanostructures. The specific surface area estimated by the Barrett-Joyner-Halenda (BJH) method, the size of the pores mainly centered at 22.1 nm with a relatively narrow distribution (inset in Fig. S3b), which is in the mesoporous range.

Fig. S3 (a) The corresponding SAED pattern of Zn_2SnO_4 nanoneedle in the square area in Fig. 3b; (b) EDX spectrum of the final products (inset show the related data).

The corresponding cube-like selected-area electron diffraction (SAED) pattern was shown in Fig. S3a and the diffraction rings from the inside to outside of the pattern can be indexed to the (220), (311) and (422) planes of inverse spinel-type Zn_2SnO_4 , respectively. From the results of EDX analysis (Fig. S3b), the mass fraction of Sn, Mn, Zn and O elements in the composites is about 36.24%, 4.32%, 9.07%, 50.37%, respectively. The mole ratio of Zn/Sn is 2.2, very close to the theoretical value of 2. In addition, from the results of the EDX, the mass content of Mn_3O_4 is about 6.00%.

Fig. S4 FESEM images of (a, c) branched MnOOH and as–prepared β-MnO₂ nanorods, respectively; (b, d) TEM images of the as-obtained MnOOH and β-MnO₂ nanorods, respectively.

It can be observed from Fig. S4a and S4b that most of the MnOOH particles display typical rod-like shapes and smooth surfaces, with diameters in the range of 80-200 nm and lengths of up to tens of micrometers. Fig. S4c and S4d display the SEM and TEM images of the as-obtained β -MnO₂, where the nanorods with smooth surface having an average diameter of 50 nm and lengths of up to 10 μ m.

Fig. S5 (a, b) TEM images of $Mn_3O_4/Zn_2SnO_4/Li$ after 10 cycles at a current density of 1000 mA g⁻¹.

Fig. S6 (a, b)TEM images and (c) XRD patterns of the 1D $ZnFe_2O_4/Mn_3O_4$ nanocomposites obtained after the hydrothermal process; (d) discharge/charge capacity and coulombic efficiency of the product at a current density of 1000 mA g⁻¹.

	Reversible	Current	Cycle	Ref.
Materials	capacity	density	number	
	(mAh/g)	(mA/g)	(n)	
ZnFe ₂ O ₄ /C hollow spheres	625	500	30	1
(Mg, Cu)co-doped ZnFe ₂ O ₄	575	100	60	2
ZnFe ₂ O ₄ nanofibers	733	60	30	3
MWCNT-ZnFe ₂ O ₄	1152	60	50	4
ZnFe ₂ O ₄ /graphene	600	200	90	5
Our work (ZnFe ₂ O ₄ / Mn ₃ O ₄)	1232.7	1000	230	

Tab. S1 Cycle performance comparisons between the Mn_3O_4 /ZnFe₂O₄ composites and previously reported ZnFe₂O₄ structures.

Fig. S7 TEM images of the as-obtained 1D $ZnFe_2O_4/Mn_3O_4$ composites at 180°C/24 h using different amounts of urea: (a) 1.7 g, (b) 1.8 g, (c)1.9 g, and (d) 2.0 g.

Fig. S8 XRD patterns of (a) the black intermediate; (b) 1D $Mn_2O_3/CoFe_2O_4$ composites obtained after annealed at 620 °C in air for 2.5 h.

Fig. S9 (a, b) TEM images of the black intermediate prepared at 180 °C for 24 h (8 mL NH₃·H₂O); (c, d) TEM image of 1D Mn₂O₃/CoFe₂O₄ composites obtained after annealed at 620 °C in air for 2.5 h; (e, f) discharge/charge capacity and coulombic efficiency of the Mn₂O₃/CoFe₂O₄ at a current density of 500 and 1000 mA g⁻¹, respectively.

Tab. S2 Cycle performance comparisons between the Mn_2O_3 /CoFe₂O₄ composites and previously reported ZnFe₂O₄ structures.

	Reversible	Current	Cycle	Ref.
Materials	capacity	density	number	

	(mAh/g)	(mA/g)	(n)	
CoFe ₂ O ₄ /nitrogen-doped carbon	646.2	0.1C	80	6
CoFe ₂ O ₄ / rGO	1040	0.1C	30	7
Co ₃ O ₄ /CoFe ₂ O ₄	896.4	0.07C	60	8
CoFe ₂ O ₄ /graphene	1082	100	50	9
	881.6	500	125	
Our work (Mn ₂ O ₃ /CoFe ₂ O ₄)	1008	1000	255	

Fig. S10 XRD patterns of a) the black intermediate (180 °C / 24 h) ; b) 1D Mn₂O₃/NiFe₂O₄ composites obtained after annealed at 680 °C in air for 2.5 h.

Fig. S11 (a, b) TEM images of the black intermediate prepared at 180 °C for 36 h (8 mLNH₃·H₂O); (c, d) TEM image of 1D $Mn_2O_3/NiFe_2O_4$ composites obtained after annealed at 620 °C in air for 2.5 h.

References

- 1. Y. F. Deng, Q. M. Zhang, S. D. Tang, L. T. Zhang, S. N. Deng, Z. C. Shi and G. H. Chen, *Chem. Commun.*, 2011, **47**, 6828-6830.
- A. S. Hameed, H. Bahiraei, M. V. Reddy, M. Z. Shoushtari, J. J. Vittal, C. K. Ong, and B. V. R. Chowdari, ACS applied materials & interfaces, 2014, 6, 10744-10753.
- 3. P. F. Teh, Y. Sharma, S. S. Pramana and M. Srinivasan, *Journal of Materials Chemistry*, 2011, **21**, 14999-15008.
- 4. J. H. Sui, C. Zhang, D. Hong, J. Li, Q. Cheng, Z.G. Li and W. Ca, *Journal of Materials Chemistry*, 2012, 22, 13674-13681.
- 5. W. T. Song, J. Xie, S. Y. Liu, G. S. Cao, T. J. Zhu and X. B. Zhao, New J. Chem, 2012, 36, 2236–2241.
- 6. Z. J. Ding, B. Yao, J. K. Feng, J. X. Zhang, Journal of Solid State Electrochemistry, 2014, 18, 19-27.
- P. R. Kumar, P. Kollu, C. Santhosh, K. E. V. Rao, D. K. Kim, A. N. Grace, *New Journal of Chemistry*, 2014, 38, 2654-2661.
- 8. A. K. Rai, J. Gim, T. V. Thi, D. A., S. J. Cho, J. Kim, *The Journal of Physical Chemistry* C, 2014, **118**, 11234–1124.
- 9. H. Xi, D. D. Zhu, Y. S. Fu, X. Wang, Electrochimica Acta, 2012, 83, 166-174.