Well-dispersed Lithium Amidoborane Nanoparticles through Nanoreactor Engineering for Improved Hydrogen Release

Guanglin Xia,^{‡ a,b} Jie Chen,^{‡a} Weiwei Sun, ^c Yingbin Tan, ^a Zaiping Guo*

^b and Xuebin Yu*^a

Figure S1. N_2 sorption isotherm and pore size distribution (inset) of the as-prepared Li₃N@CNFs (a) and LiAB@CNFs (b).

Figure S2. FTIR spectra of the bulk LiAB (black line), LiAB@CNFs (red lines) and their decomposed products to 120 °C.

Figure S3. Volumetric results for the decomposition of LiAB@CNFs.

Figure S4. Hydrogen desorption curves of the bulk LiAB at different temperatures.

Figure S5. XRD results of the bulk LiAB and LiAB@CNFs after heating to 200 °C.

Figure S6. FTIR spectra of the decomposed product of bulk LiAB to 250 °C.

Figure S7. DSC profiles for the dehydrogenation of (i) pristine LiAB and (ii) LiAB@CNFs. The heating rate is 5 °C min⁻¹.