Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2014

1	Supporting Information
2	
3	"Red-to-blue" colorimetric detection for cysteine via anti-etching of silver
4	nanoprisms
5	
6	Yonglong Li ^{a,b} , Zihou Li ^a , Yuexia Gao ^a , An Gong ^a , Yuejie Zhang ^a , Narayan S. Hosmane ^c ,
7	Zheyu Shen ^{a,*} , Aiguo Wu ^{a,*}
8	
9	^a Key Laboratory of Magnetic Materials and Devices, & Division of Functional Materials and Nano
10	Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences,
11	Ningbo, Zhejiang, 315201, China.
12	^b Nano Science and Technology Institute, University of Science and Technology of China, Suzhou,
13	Jiangsu, 215123, China.
14	^c Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
15	
16	
17	
18	
19	*Corresponding authors.
20	Tel: +86 574 86685039, or +86 574 87617278; Fax: +86 574 86685163
21	E-mail: aiguo@nimte.ac.cn; or shenzheyu@nimte.ac.cn
22	

Method	Technique in detail	LOD (Naked eyes / UV-vis)	Selectivity	Linear range (nM)	Ref.
UV-vis	Cys inducing the self-assembly of gold nanorods	/	Not good		21
UV-vis	Cys inducing the end-to-end assembly of gold nanorods	/10pM		10-1000	22
Colorimetry	Cys coordinated with Hg ²⁺ inducing melting transition of DNA linked AuNPs	100nM/	Good	50-1000	23
Colorimetry	Cys inducing CTAB capped AuNPs aggregation	/24nM	Good	82.5-330	24
Colorimetry	Cys inducing AgNPs aggregation in the presence of Cr^{3+}	/1nM	Good	1-106	25
Colorimetry	Cys etching the concer of AgNPRs	160nM/-	Good		26
Fluorescence	Cys quenching the emissive silver nanoclusrers by thiol-adsorption- accelerated oxidation	-/20nM	Good	25-6000	27
Fluorescence	Cys quenching the fluorescence of glutathione-pretected silver nanoclusrers	/<3nM	Good	0-500	28
Colorimetry	Cys protecting AgNPRs from I ⁻ attacked	25nM/10nM	Good	50-1000	This work

2 Table S1. Comparison of various typical techniques for Cys analysis in solution

Sample	$Added^a(\mu M)$	$Found^b(\mu M)$	Recovery(%) ^c	
1% FBS	0 0.388			
	0.1	0.514	126	
	0.5	0.959	114.2	
1%Urine	0	0.416		
	0.1	0.541	125	
	0.5	1.058	128.4	
0.1% Plasma	0	0.125		
	0.1	0.242	117	
	0.5	0.573	89.6	
0.5% Plasma	0	0.475		
	0.1	0.708	227	
	0.5	1.154	135.8	

2 Table S2. Determination of Cys in rabbit body fluid samples (n=3)

3 ^a The added amount of Cys in the real samples;

4 ^bThe Cys concentration in the bio-samples determined by our detection system using UV-vis 5 spectroscopy;

6 Calculated from the equation: (Found value with Cys addition - Found value without Cys

7 addition)/Added value.

8

Figure S1. Size distribution of AgNPRs without I⁻and Cys (control), AgNPRs incubated with 5.0 μ M of I⁻, AgNPRs in the presence of Cys (5.0 μ M), AgNPRs incubated with 5.0 μ M of I⁻ in the presence of Cys (5.0 μ M).

Figure S2. Raman spectra of AgNPRs at different conditions. (a): AgNPRs; (b): AgNPRs incubated
with 5.0 μM of I⁻; (c): AgNPRs in the presence of Cys (5.0 μM); (d): AgNPRs incubated with 5.0
μM of I⁻ in the presence of Cys (5.0 μM).

4 Figure S3. XPS spectra of I 3d of KI and AgNPRs incubated with I^- in the presence of Cys.

Figure S4. Photographic image (a) and corresponding UV-vis spectra (b) of AgNPR dispersions in
the presence of various KI concentrations. The incubation time is 10 min.

Figure S5. Plot of wavelength shift versus incubation time of AgNPRs and I⁻ (5.0 μ M) at room 6 temperature. The wavelength shift is calculated between the peak wavelengths of the AgNPR 7 dispersions incubated with I⁻ and that without I⁻ incubation.

4 **Figure S6.** Influence of pH value of AgNPR dispersions (incubated with 5.0 μ M of I⁻ in the 5 presence of 5.0 μ M of Cys) on the sensing effect of Cys: (a) Photographic image, (b) Plot of 6 wavelength shift, which is calculated between the peak wavelengths of the AgNPR dispersions 7 incubated with I⁻ (5.0 μ M) in the presence of Cys and that in the absence of Cys, as a function of 8 pH. The AgNPR dispersions incubated with 5.0 μ M of I⁻ in the absence of Cys are used as controls. 9 The incubation time is 10 min.

Figure S7. Selectivity of the AgNPRs-based detection system for Cys compared with other amino 3 acids. (a): Photographic image of and corresponding UV-vis spectra of the AgNPR dispersions 4 incubated with 5.0 µM of I⁻ in the presence of single amino acid (the concentration is 5.0 µM for 5 Cys, GSH, but 500 µM for other amino acids); the AgNPR dispersion incubated with 5.0 µM of I⁻ 6 in the absence of amino acid is used as a control. (b): Photographic image of and corresponding 7 UV-vis spectra of the AgNPR dispersions incubated with 5.0 µM of I⁻ in the presence of 5.0 µM of 8 Cys and 500 µM of single amino acid; the AgNPR dispersion incubated with 5.0 µM of I⁻ in the 9 presence of 5.0 µM of Cys is used as a control. 10

Figure S8. The UV-vis spectra of AgNPRs at the different conditions.(a) AgNPRs incubated with 5.0 μ M of I⁻ (control); (b) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of stabilizer homocysteine (Hcy) (2.5 μ M); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of stabilizer Cys (2.5 μ M). The inset image corresponds to the colorimetric response.

Figure S9. The UV-vis spectra of AgNPRs at the different conditions. (a) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of 2.5 μ M Cys (control); (b) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of NaCl (0.9 %); (c) AgNPRs incubated with 5.0 μ M of I⁻ in the presence of Na

Figure S10. A calibration curve constructed with standard Cys solutions. The standard Cys
solutions were determined by HPLC with a C18 column. The flow rate is 1.0 mL/min. The mobile
phase is a mixture of water and acetonitrile (95:5).