2nd-Revised SI: NR-ART-06-2014-003376.R1

Supplementary Information

Single-Source-Precursor Synthesis of Dense SiC/HfC_xN_{1-x}-Based Ultrahigh-

Temperature Ceramic Nanocomposite

Qingbo Wen^a, Yeping Xu^b, Binbin Xu^c, Claudia Fasel^a, Olivier Guillon^d, Gerd Buntkowsky^b, Zhaoju Yu^{e,f,*}, Ralf Riedel^a, Emanuel Ionescu^a

^a Technische Universität Darmstadt, Institut für Materialwissenschaft, Jovanka-Bontschits-Straße 2, D-64287, Darmstadt, Germany

^b Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 4, D-64287, Darmstadt, Germany

^c College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China

^d Otto Schott Institute for Materials Research, Friedrich Schiller University of Jena, Loebdergraben 32, D-07743 Jena, Germany (present address: Forschungszentrum Jülich, Institut für Energie- und Klimaforschung 1: Werkstoffsynthese und Herstellungsverfahren, Wilhelm-Johnen-Straße, D-52425 Jülich)

^e College of Materials, Key Laboratory of High Performance Ceramic Fibers (Xiamen University), Ministry of Education, Xiamen 361005, China

^f College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China

*Corresponding Author: Zhaoju Yu (<u>zhaojuyu@xmu.edu.cn</u>).

Raman Spectroscopy Characterization of SiHfCN-based ceramics

The Raman spectra of the ceramics pyrolyzed at 1100°C and annealed at different temperature reveal the presence of segregated carbon at all temperatures (Figure S1). In the Raman spectra of SiHfCN-based ceramics, the bands at 1350 cm⁻¹ and 2700 cm⁻¹ were assigned to the disorder-induced D band and 2D band (overtone of the D band, also named G' band) respectively, and the band at 1582 cm⁻¹ assigned to the G mode representing the stretching vibrations of sp² carbon in the basal-plane of graphite.¹ The band appearing at 796cm⁻¹ after annealing at temperatures higher than 1500 °C is the transverse optical (TO) phonon mode of β -SiC.² At temperatures lower than 1300 °C, the D and G bands are broad and overlapped due to the high disorder of the segregated carbon phase.³ With the increasing of annealing temperature from 1400 °C to 1800 °C, the D and G bands become sharper, and

the intensity of 2D (G') bands grows gradually indicating that the ordering of the segregated carbon phase increases. However, the high intensity of the D band in all recorded spectra indicates in all samples that the carbon phase should be considered as being highly disordered / turbostratic in its nature.

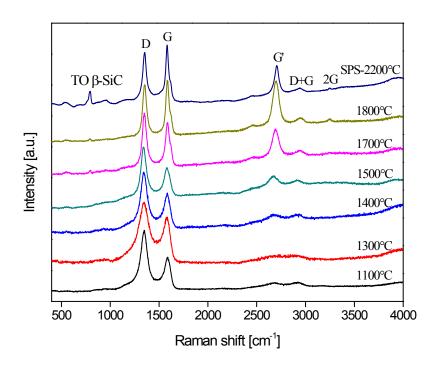


Figure S1 Raman spectra of SiHfCN-based ceramics annealed at different temperatures.

REFERENCES

- 1. R. Nemanich and S. Solin, *Physical Review B*, 1979, **20**, 392.
- 2. S.-i. Nakashima and H. Harima, *physica status solidi* (*a*), 1997, **162**, 39-64.
- 3. G. Mera, A. Navrotsky, S. Sen, H.-J. Kleebe and R. Riedel, *Journal of Materials Chemistry A*, 2013, **1**, 3826-3836.