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Part S1. characterization of ZnO-seeds@CFC.

Fig. S1. (a) Typical SEM images of ZnO-seeds@CFC; (b) Energy dispersive X-ray 
spectrum (EDS) performed on the ZnO-seeds@CFC.

Part S2. Lattice-resolved TEM image of ZnO-mesoporous-NS.

Fig. S2. lattice-resolved TEM image of ZnO-mesoporous-NS.



Part S3. XRD patterns of ZnO-mesoporous-NSs@CFC and bare CFC.

Fig. S3. XRD patterns of I: ZnO-mesoporous-NSs@CFC; II: bare CFC.

Part S4. Adsorption capacity of different substrates.
As ZnO seeds have completely covered on the surface of CFC, it indeed formed a 

solid and nonporous ZnO film on the surface of CFC. Therefore ZnO-seeds@CFC 

were used as control experimental examples to examine the impact of porous structure. 

The same size of CFC, ZnO-seeds@CFC, ZnO-mesoporous-NSs@CFC substrates 

were put into same volume of 10-5 M R6G solution for 12 hours respectively and then 

their remnant concentration were examined through UV-vis spectroscopy. Fig. S4 

shows that the absorbance of the R6G solution decreased significantly with ZnO-

mesoporous-NSs@CFC dipped inside, indicating that ZnO-NSs@CFC with porous 

structure have the highest adsorption capacity.

Fig. S4. UV-vis spectra of I: original 10-5 M R6G solution; II: R6G solution with CFC; 
III: R6G solution with ZnO-seeds@CFC; IV: R6G solution with ZnO-mesoporous-
NSs@CFC.



Part S5. The photos of each stage.

Fig. S5. The photo of (a) black CFC; (b) light-blue ZnO-seeds@CFC; (c) white 

ZnO-mesoporous-NSs@CFC; (d) gray Ag-NPs@ZnO-mesoporous-NSs@CFC.

Part S6. EDS characterization of Ag-NPs@ZnO-mesoporous-NSs@CFC.

Fig. S6. EDS performed on the optimal Ag-NPs@ZnO-mesoporous-NSs@CFC.



Part S7. Lattice-resolved TEM image of Ag-NPs@ZnO-mesoporous-NS.

Fig. S7. Lattice-resolved TEM image of Ag-NPs@ZnO-mesoporous-NS.

Part S8. UV-vis spectra.

Fig. S8. UV-vis spectra of I: The difference spectrum of Ag-NPs@ZnO-mesoporous-
NSs@CFC and ZnO-mesoporous-NSs@CFC; II: Ag-NPs@ZnO-mesoporous-
NSs@CFC; III: ZnO-mesoporous-NSs@CFC. 
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Part S9. The enhancement contribution of ZnO.
To evaluate the existence of chemical enhancements from ZnO, the SERS spectra of 

p-ATP with different concentrations adsorbed on the ZnO-mesoporous-NSs@CFC 

are shown in Fig. S9. For 10-3 M p-ATP, four fingerprint peaks of p-ATP at 1085 cm-1, 

1143 cm-1, 1456 cm-1 and 1586 cm-1 can be clear seen in Fig. S9(a) curve I. While for 

10-4 M p-ATP, the fingerprint peaks of p-ATP can still be distinguished, but not so 

obvious, as shown in Fig. S9(a) curve II. So we further design some indirect 

experiments to examine its existence according to a previous work1. In detail, CFC, 

ZnO-seeds@CFC, and Zn4(CO3)(OH)6·H2O-NSs@CFC with the same Ag sputtering 

durations were used as experimental examples. Their SERS-activity to 10-4 M p-ATP 

are shown in Fig. S9(b). It is clear that Raman signal intensities of p-ATP adsorbed on 

the surface of Ag-NPs@ZnO-mesoporous-NSs@CFC are the largest. Although 

Raman signal of 10-4 M p-ATP adsorbed on pure ZnO-mesoporous-NSs@CFC is 

weak, as the Zn4(CO3)(OH)6·H2O-NSs have similar sheet-like structures with that of 

ZnO-mesoporous-NSs, the larger SERS-activity of Ag-NPs@ZnO-mesoporous- 

NSs@CFC than that of Ag-NPs@Zn4(CO3)(OH)6·H2O-NSs@CFC should be related 

to the contribution of ZnO. 

Fig. S9. (a) SERS spectra of p-ATP with different concentrations adsorbed on the 

ZnO-mesoporous-NSs@CFC. I: 10-3 M p-ATP; II 10-4 M p-ATP. (b) SERS spectra of 

10-4 M p-ATP by using I: Ag-NPs@ZnO-mesoporous-NSs@CFC; II: Ag-

NPs@Zn4(CO3)(OH)6·H2O-NSs@CFC; III: Ag-NPs@ZnO-seeds@CFC; IV: Ag-

NPs@CFC. 



Part S10. Calculation of the average enhancement factor (EF).

The EF can be calculated by  
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Where ISERS and INor represent the intensity of the 1600 cm-1 band in the Raman 

spectrum of p-ATP and normal Raman spectrum, under the same experimental 

conditions (laser wavelength, laser power, microscope objective/lenses, accumulation 

time), respectively. NSERS and NNor represent the corresponding number of molecules 

in the focused incident laser spot. Herein, for SERS experiment, a certain volume 

(VSERS) and concentration (CSERS) p-ATP ethanol solution was dispersed to an area of 

SSERS at the as-fabricated substrate. Similarly, for normal Raman experiment, a certain 

volume (VNor) and concentration (CNor) p-ATP ethanol solution was dispersed to an 

area of SNor at a clean glass substrate. Both the substrates were dried in air. Thus the 

foregoing equation can be rewritten as follows:
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In our experiments, 70 µL 10-3 M p-ATP ethanol solution was dispersed to an area of 

about 50 mm2 on a glass substrate，40 µL 10-9 M p-ATP ethanol solution was 

dispersed to an area of about 60 mm2 for the Ag-NPs@ZnO-mesoporous-NSs@CFC 

and 40 µL 10-7 M p-ATP ethanol solution was dispersed to an area of about 70 mm2 

for the Ag-NPs@ZnO-seeds@CFC. Fig. S10(a) and S10(b) show the Raman 

spectrum of p-ATP from the above-mentioned substrates. For the band at 1600 cm-1, 

ISERS/INor is about 2.66 and 1.66. Hence the average enhancement factor for Ag-



NPs@ZnO-mesoporous-NSs@CFC and Ag-NPs@ZnO-seeds@CFC are calculated to 

be 5.58×106 and 4.06×104.

Fig. S10. (a) I: Raman spectrum of p-ATP obtained using dried 70 µL 10-3 M PATP 

ethanol solution dispersed on 50 mm2 glass substrate. II: SERS spectrum of 40 µL 10-

9 M p-ATP ethanol solution dispersed on 60 mm2  Ag-NPs@ZnO-mesoporous- 

NSs@CFC (b) I: Raman spectrum of p-ATP obtained using dried 70 µL 10-3 M PATP 

ethanol solution dispersed on 50 mm2 glass substrate. II: SERS spectrum of 40 µL 10-

7 M p-ATP ethanol solution dispersed on 70 mm2 Ag-NPs@ZnO-seeds@CFC. 

Part S11. SERS-signal uniformity of Ag-NPs@ZnO-mesoporous-NSs@CFC.

Fig. S11. SERS spectra of R6G obtained from ten random carbon fibers of as-
prepared optimal SERS substrate. Data acquisition time 5 s, [R6G] = 1.0×10-7 M.



Part S12. Raman spectrum of CFC.

Fig. S12. Raman spectrum of CFC.
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