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Scheme S1. Synthesis of Fe3O4-DBA-PEG-NH-DTPA-AMC:Eu3+ (1)

Figure S1. Potentiometric titration V-pH curves for the DTPA-AMC (A), 
Eu:DTPA-AMC complex (B) and Cu:DTPA-AMC complex (C) system 
at 25 °C and I = 0.1 mol dm-3 NaCl. 



Where j is the amount of H+ in ligand acid HjL, CL is the concentration of 

HjL, CA is the concentration of strong acid, [H+] is obtained from pH 

value measured, [OH-] is obtained from the water constant of 

KW=[H+][OH-] at experimental temperature and [Na+] is the 

concentration of NaOH in solution, β1
H, β2

 H, βj H are the cumulative 

protonation constants and CM is the concentration of metal ion analyzed.

According the Bjerrun’s Half-  Method and the data of Figure S1A, the 

n

values of pH and  computed by the equation (1) were analyzed to 

Hn

calculate the protonation constant of ligand. The protonation constant of 

ligand DTPA-AMC was presented as Table S1.



Table S1. The protonation constant of ligand.

According the Bjerrun’s Half-  Method and the data of Figure S1B and 

n

Figure S1C, the values of pL and  computed by the equation (2)-(4) were 

n

analyzed to calculate the stability constant of complex. The stability 

constants of complexes Eu:DTPA-AMC and Cu:DTPA-AMC were 

presented as Table S2.

Table S2. The stability constants of complexes.

Figure S2. Reaction times on the emission intensity of 10 μM 1 with 1 

μM, 10 μM and 100 μM Cu2+ in Tris-HCl buffer (50 mM, pH 7.20) at 



616 nm, respectively.

Figure S3. Effects of pH value on the emission intensity of 10 μM 1 

without Cu2+ (black) and with 10 μM Cu2+ (red) in Tris-HCl buffer (50 

mM, pH 7.20) at 616 nm.

Figure S4. From left to right are fluorescence photographs of 10μM 1 

after addition of 0 μM, 25 μM, 50 μM, 75 μM, 100 μM Cu2+ under UV 

light (254 nm) in Tris-HCl buffer(50 mM, pH 7.20).



Figure S5. Fluorescence photographs changes of 10 μM 1 in the presence 

of 50 μM metal ions under UV light (254 nm) in Tris-HCl buffer (50 mM, 

pH 7.20).

Figure S6. Fluorescent emission decay curves of 50 μM 1 without (black) 

and with 7 μM Cu2+ (blue) at 616 nm.



Table S3. Fluorescent lifetimes of 1 before and after addition of Cu2+.

aAveraged lifetimes was calculated using the equation , 2 /i i i iA A     

where Ai are the preexponential factors related with the statistical weights 

of each exponential.

Figure S7. The Fluorescent intensity ratio F0/F changes of 10 μM Fe3O4 

NPs-Eu3+ complex in the presence of different concentration of Cu2+ at 

616 nm. F0 and F are the fluorescence intensities of 1 in the absence and 

presence of Cu2+, respectively.



Figure S8. The magnetization hysteresis loops of Fe3O4 NPs (black) and 

1(red).

Figure S9. Detection and verification of the estimated Cu2+ concentration 

after magnetic separation.



Figure S10. The fluorescent emission spetra of 10 μM Eu3+ in the 

presence of different concentration of Fe3O4-DBA-PEG-NH-DTPA-AMC 

(0, 0.1 mg/L, 0.2 mg/L, 0.3 mg/L, 0.4 mg/L, 0.5 mg/L, 0.6 mg/L, 0.7 

mg/L, 0.8 mg/L).

Table S4. The Cu2+ concentration before and after separation by 

nanocomposite 1 and the verification of the estimated Cu2+ concentration 

after magnetic separation and the removal efficiency.


