- Supplementary Information -

Electrical Breakdown of Multilayer MoS₂ Field-Effect Transistors with Thickness-Dependent Mobility

Rui Yang¹, Zenghui Wang¹, Philip X.-L. Feng^{1,*}

¹Department of Electrical Engineering & Computer Science, Case School of Engineering Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA

1. Experimental Details of Electrical Breakdown Measurements

The multilayer MoS_2 devices experience multiple sweeping cycles in the electrical breakdown measurement (as shown in Fig. 4 in the Main Text). In the measurements, we start with smaller sweeping ranges for V_D , and then gradually increase the voltage range. We repeat multiple times for each V_D range and observe changes in device characteristics, including breakdown. Figure S1 shows the details of V_D sweeps. We observe in multiple devices (Figs. S1 (c)-(h)) that the current levels gradually decrease with subsequent sweeping cycles. Different breakdown locations on the devices are observed (Fig. S1 insets).

^{*}Corresponding Author. Email: <u>philip.feng@case.edu</u>

Fig. S1: V_D sweeps during the electrical breakdown measurement of multilayer MoS₂ transistors shown in Fig. 4 in the main text, with (a)-(b) for the device in Fig. 4(a), (c)-(d) for the device in Fig. 4(b), (e)-(f) for the device in Fig. 4(c), and (g)-(h) for the device in Fig. 4(d). The red curves show the final breakdown sweeps. Insets: Optical microscope images before (a,c,e,g) and after (b,d,f,h) the breakdown.

2. Scattering Mechanisms

We model the device mobility dependence on thickness with different scattering mechanisms, and the relaxation time for each scattering mechanism is plotted in Fig. S2 for MoS₂ thickness of 2.5nm to 86nm, which corresponds to 4 to 140 layers, using 0.615nm as the layer spacing¹. As phonon scattering and charged impurity scattering in MoS₂ has been reported elsewhere1^{,2,3,4,5}, here we focus on other mechanisms, including boundary scattering (assuming the electron mean free path is on the order of MoS₂ thickness)⁶, vacancy scattering (in calculation we use values of vacancy defect density $n_v=10^{13}$ cm⁻², electron density $n_e=10^{12}$ cm⁻², and vacancy radius comparable to the lattice constant)⁷, and thickness step scattering (assuming average step distance of ~1.5µm, and step height comparable to the single layer thickness)⁸. We calculate these scattering mechanisms in MoS₂ and the results are shown in Fig. S2. The total relaxation time is calculated for different fitting parameters β (2, 4, and 6) as shown in the main text.

Fig. S2: Relaxation time for different scattering mechanisms with different MoS₂ thickness.

3. Details of FEM Simulation for Electrical Breakdown

In the electrical breakdown simulation (as shown in Fig. 6 in the Main Text), we use σ =35000S/m in Figs. 6(a)-(c)⁹. In the model we assume the MoS₂ extends 1µm into the contact, with 8k Ω contact resistance¹⁰. The heat is generated in MoS₂ channel and contact region and is dissipated to the SiO₂ and Si substrate, using thermal conductivity of SiO₂ and Si of 1.4W/(m K) and 130W/(m K), respectively. The surface of the substrate is held at room temperature (293.15K). The cross-section view of the FEM result (Fig. S3) shows that the heat dissipation into the substrate dominates.

Fig. S3: The cross-section view of the FEM result of the temperature profile under Joule heating. In simulation the MoS₂ has t=25nm, $L=5\mu$ m, $W=2\mu$ m.

4. Summary of All the Measured Devices

Device ID #	MoS ₂ Thickness (nm)	SiO ₂ Substrate Thickness	Contact Materials	Mobility (cm ² /(V s))	I _{On} /I _{Off} Ratio	Comments
1	70.3	290nm	Ti(3nm) /Ni(50nm)	42	10 ⁴	Figs. 2(a)- 2(d), Highest Mobility
2	5.7	290nm	Ti(2nm) /Ni(150nm)	9.9	4×10 ⁶	Figs. 2(e)- 2(h)
3	12	290nm	Ni(50nm)	18.3	6×10 ⁴	Fig. 4(d)
4	18.4	290nm	Ti(2nm) /Ni(150nm)	6.5	10^{6}	
5	55	290nm	Ni(50nm)	38.7	7×10^{4}	Fig. 4(c)
6	76/22 Step	290nm	Ni(50nm)	2	6×10 ⁴	Fig. 4(b)
7	32	290nm	Ti(5nm) /Ni(100nm)	36.8	10 ⁷	Highest I _{On} /I _{Off} Ratio
8	12	290nm	Ti(5nm) /Ni(100nm)	9.8	10 ⁶	
9	39	3.5µm	Ti(5nm) /Ni(150nm)	31.9	10 ⁵	
10	7	3.5µm	Ti(5nm) /Ni(70nm)	1.6	10 ³	

Table S1: List of measured multilayer MoS_2 FETs and the parameters

References

- ¹ S.-L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu, W.-W. Li, Y.-F. Lin, A. Aparecido-Ferreira, K. Tsukagoshi, Nano Lett. **13**, 3546 (2013).
- ² N. Ma, D. Jena, Phys. Rev. X 4, 011043 (2014).
- ³ K. Kaasbjerg, K. S. Thygesen, K. W. Jacobsen, Phys. Rev. B 85, 115317 (2012).
- ⁴ B. L. Gelmont, M. Shur, M. Stroscio, J. Appl. Phys. 77, 657 (1995).
- ⁵ S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, K. Kim, Nat. Commun. **3**, 1011 (2012).
- ⁶ P. E. Hopkins, J. Appl. Phys. 105, 093517 (2009).
- ⁷ J.-H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, E. D. Williams, Phys. Rev. Lett. **102**, 236805 (2009).
- ⁸ Y. Tokura, T. Saku, Y. Horikoshi, Phys. Rev. B 53, R10528 (1996).
- ⁹ B. Radisavljevic, A. Kis, Nat. Mater. 12, 815 (2013).
- ¹⁰ B. W. H. Baugher, H. O. H. Churchill, Y. Yang, P. Jarillo-Herrero, Nano Lett. 13, 4212 (2013).