Electronic Supplementary Information

Synthesis and characterization of Pt nanoparticles with different morphologies

in mesoporous silica SBA-15 for methanol oxidation reaction

C.S. Chen^{a,*}, Y.T. Lai^a, T.C. Chen^b, C.H. Chen^c, J.F. Lee^d, C.W. Hsu^e, and H.M.

Kao ^{f,*}

^aCenter for General Education, Chang Gung University, 259 Wen-Hwa 1st Road,

Kwei-Shan Tao-Yuan, Taiwan, 333, Republic of China

^bDepartment of Pathology, Chang Gung Memorial Hospital, 5 Fusing St., Kwei-Shan Tao-Yuan, Taiwan, 333, Republic of China

^c Graduate Institute of Applied Science and Technology, National Taiwan
University of Science and Technology, 43, Section 4, Keelung Road, Taipei, 106,
Taiwan, Republic of China

^dNational Synchrotron Radiation Research Center Hsinchu 300, Taiwan, Republic of China

^eDepartment of Material Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, Republic of China

^fDepartment of Chemistry, National Central University, Chung-Li, Taiwan 320, Republic of China

	Acidic Capacity
Sample	(mmol of H^+/g)
As-prepared SBA-15(-COOH)	1.04
Calcined SBA-15(-COOH) ^a	0.52
Pt ⁴⁺ impregnated on SBA-15(-COOH)	0.27
Calcined Pt ⁴⁺ /SBA-15(-COOH) ^b	0.25
Pt ⁴⁺ impregnated on calcined SBA-15(-COOH) ^c	0.19

Table S1 Total acidic capacity of SBA-15(-COOH) and Pt⁴⁺/SBA-15(-COOH)

^aSBA-15(-COOH) was calcined at 673 K for 5 h; ^bPt/SBA-15(-COOH) was calcined

at 673 K for 5 h; °Pt⁴⁺ was impregnated on SBA-15(-COOH) undergoing calcination

at 673 K for 5 h.

Figure S1 Pore size distributions of the samples shown in Figure 2

Figure S2 TEM images of calcined NPs: (a) 2.46% Pt on SBA-15 and (b) 2.52% on

SBA-15(-COOH). All samples were calcined in air at 673 K for 5 h.

Figure S3 TEM images of reduced NPs: (a) 0.87 % Pt on SBA-15 and (b) 0.85% on

SBA-15(-COOH).

Fig. S4 Time dependence of the IR spectra for the co-adsorption of methanol and air onto 2.46% Pt/SBA-15 at 298 K for the (a) injection of 5 μ L of CH₃OH onto the catalyst for 5 min and (b) 30 mL/min airflow passed through the methanol pre-covered catalyst for 30 min.

Fig. S5 Time-dependent IR spectra for a 5 µL injection of CH₃OH onto pure CO pre-

covered 2.46% Pt/SBA-15: (A) 20 min of CO exposure; (B) 30 s of CO exposure.

Figure S6 (A) UV–Vis diffuse reflectance spectra of (a) 2.5% Pt⁴⁺/SBA-15, (b) 2.5%

Pt⁴⁺/SBA-15 reduced by CO gas at 673 K for 30 min, (c) 2.5% Pt/SBA-15 calcined in air and reduced in H_2 at 673 K for 5 h; (B) in situ Pt L-edge XANES spectra of Pt⁴⁺/SBA-15 in a 5% CO stream at different temperatures.